Oral 1: Learning in the wild, Reinforcement learning Tue 26 Apr 12:00 a.m.

For many differentially private algorithms, such as the prominent noisy stochastic gradient descent (DP-SGD), the analysis needed to bound the privacy leakage of a single training run is well understood. However, few studies have reasoned about the privacy leakage resulting from the multiple training runs needed to fine tune the value of the training algorithm’s hyperparameters. In this work, we first illustrate how simply setting hyperparameters based on non-private training runs can leak private information. Motivated by this observation, we then provide privacy guarantees for hyperparameter search procedures within the framework of Renyi Differential Privacy. Our results improve and extend the work of Liu and Talwar (STOC 2019). Our analysis supports our previous observation that tuning hyperparameters does indeed leak private information, but we prove that, under certain assumptions, this leakage is modest, as long as each candidate training run needed to select hyperparameters is itself differentially private.

Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL---representation learning and label disambiguation---in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Extensive experiments demonstrate that PiCO significantly outperforms the current state-of-the-art approaches in PLL and even achieves comparable results to fully supervised learning. Code and data available: https://github.com/hbzju/PiCO.

Multimodal contrastive learning methods like CLIP train on noisy and uncurated training datasets. This is cheaper than labeling datasets manually, and even improves out-of-distribution robustness. We show that this practice makes backdoor and poisoning attacks a significant threat. By poisoning just 0.01% of a dataset (e.g., just 300 images of the 3 million-example Conceptual Captions dataset), we can cause the model to misclassify test images by overlaying a small patch. Targeted poisoning attacks, whereby the model misclassifies a particular test input with an adversarially-desired label, are even easier requiring control of 0.0001% of the dataset (e.g., just three out of the 3 million images). Our attacks call into question whether training on noisy and uncurated Internet scrapes is desirable.

An agent's functionality is largely determined by its design, i.e., skeletal structure and joint attributes (e.g., length, size, strength). However, finding the optimal agent design for a given function is extremely challenging since the problem is inherently combinatorial and the design space is prohibitively large. Additionally, it can be costly to evaluate each candidate design which requires solving for its optimal controller. To tackle these problems, our key idea is to incorporate the design procedure of an agent into its decision-making process. Specifically, we learn a conditional policy that, in an episode, first applies a sequence of transform actions to modify an agent's skeletal structure and joint attributes, and then applies control actions under the new design. To handle a variable number of joints across designs, we use a graph-based policy where each graph node represents a joint and uses message passing with its neighbors to output joint-specific actions. Using policy gradient methods, our approach enables joint optimization of agent design and control as well as experience sharing across different designs, which improves sample efficiency substantially. Experiments show that our approach, Transform2Act, outperforms prior methods significantly in terms of convergence speed and final performance. Notably, Transform2Act can automatically discover plausible …

How can a reinforcement learning (RL) agent prepare to solve downstream tasks if those tasks are not known a priori? One approach is unsupervised skill discovery, a class of algorithms that learn a set of policies without access to a reward function. Such algorithms bear a close resemblance to representation learning algorithms (e.g., contrastive learning) in supervised learning, in that both are pretraining algorithms that maximize some approximation to a mutual information objective. While prior work has shown that the set of skills learned by such methods can accelerate downstream RL tasks, prior work offers little analysis into whether these skill learning algorithms are optimal, or even what notion of optimality would be appropriate to apply to them. In this work, we show that unsupervised skill discovery algorithms based on mutual information maximization do not learn skills that are optimal for every possible reward function. However, we show that the distribution over skills provides an optimal initialization minimizing regret against adversarially-chosen reward functions, assuming a certain type of adaptation procedure. Our analysis also provides a geometric perspective on these skill learning methods.
Many real-world applications of reinforcement learning (RL) require the agent to deal with high-dimensional observations such as those generated from a megapixel camera. Prior work has addressed such problems with representation learning, through which the agent can provably extract endogenous, latent state information from raw observations and subsequently plan efficiently. However, such approaches can fail in the presence of temporally correlated noise in the observations, a phenomenon that is common in practice. We initiate the formal study of latent state discovery in the presence of such exogenous noise sources by proposing a new model, the Exogenous Block MDP (EX-BMDP), for rich observation RL. We start by establishing several negative results, by highlighting failure cases of prior representation learning based approaches. Then, we introduce the Predictive Path Elimination (PPE) algorithm, that learns a generalization of inverse dynamics and is provably sample and computationally efficient in EX-BMDPs when the endogenous state dynamics are near deterministic. The sample complexity of PPE depends polynomially on the size of the latent endogenous state space while not directly depending on the size of the observation space, nor the exogenous state space. We provide experiments on challenging exploration problems which show that our approach works empirically.
Oral 1: AI Applications Tue 26 Apr 12:00 a.m.

Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. To address these issues, we introduce Time Control (TC), a language model that implicitly plans via a latent stochastic process. TC does this by learning a representation which maps the dynamics of how text changes in a document to the dynamics of a stochastic process of interest. Using this representation, the language model can generate text by first implicitly generating a document plan via a stochastic process, and then generating text that is consistent with this latent plan. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC improves performance on text infilling and discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +40% better) and text length consistency (up to +17% better). Human evaluators also prefer TC's output 28.6% more than the baselines.

Musical expression requires control of both what notes that are played, and how they are performed. Conventional audio synthesizers provide detailed expressive controls, but at the cost of realism. Black-box neural audio synthesis and concatenative samplers can produce realistic audio, but have few mechanisms for control. In this work, we introduce MIDI-DDSP a hierarchical model of musical instruments that enables both realistic neural audio synthesis and detailed user control. Starting from interpretable Differentiable Digital Signal Processing (DDSP) synthesis parameters, we infer musical notes and high-level properties of their expressive performance (such as timbre, vibrato, dynamics, and articulation). This creates a 3-level hierarchy (notes, performance, synthesis) that affords individuals the option to intervene at each level, or utilize trained priors (performance given notes, synthesis given performance) for creative assistance. Through quantitative experiments and listening tests, we demonstrate that this hierarchy can reconstruct high-fidelity audio, accurately predict performance attributes for a note sequence, independently manipulate the attributes of a given performance, and as a complete system, generate realistic audio from a novel note sequence. By utilizing an interpretable hierarchy, with multiple levels of granularity, MIDI-DDSP opens the door to assistive tools to empower individuals across a diverse range of musical experience.

Automatic speech recognition systems have created exciting possibilities for applications, however they also enable opportunities for systematic eavesdropping.We propose a method to camouflage a person's voice from these systems without inconveniencing the conversation between people in the room. Standard adversarial attacks are not effective in real-time streaming situations because the characteristics of the signal will have changed by the time the attack is executed. We introduce predictive adversarial attacks, which achieves real-time performance by forecasting the attack vector that will be the most effective in the future. Under real-time constraints, our method jams the established speech recognition system DeepSpeech 3.9x more than online projected gradient descent as measured through word error rate, and 6.6x more as measured through character error rate. We furthermore demonstrate our approach is practically effective in realistic environments with complex scene geometries.

Our work focuses on the development of a learnable neural representation of human pose for advanced AI assisted animation tooling. Specifically, we tackle the problem of constructing a full static human pose based on sparse and variable user inputs (e.g. locations and/or orientations of a subset of body joints). To solve this problem, we propose a novel neural architecture that combines residual connections with prototype encoding of a partially specified pose to create a new complete pose from the learned latent space. We show that our architecture outperforms a baseline based on Transformer, both in terms of accuracy and computational efficiency. Additionally, we develop a user interface to integrate our neural model in Unity, a real-time 3D development platform. Furthermore, we introduce two new datasets representing the static human pose modeling problem, based on high-quality human motion capture data, which will be released publicly along with model code.

The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of the maximum softmax probability OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve state-of-the-art on a number of OSR benchmarks. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but the resulting discrepancy with the strong baseline is marginal. Our third contribution is to present the 'Semantic Shift Benchmark' (SSB), which better respects the task of detecting semantic novelty, as opposed to low-level distributional shifts as tackled by neighbouring machine learning fields. On this new evaluation, we again …

We study how the choice of visual perspective affects learning and generalization in the context of physical manipulation from raw sensor observations. Compared with the more commonly used global third-person perspective, a hand-centric (eye-in-hand) perspective affords reduced observability, but we find that it consistently improves training efficiency and out-of-distribution generalization. These benefits hold across a variety of learning algorithms, experimental settings, and distribution shifts, and for both simulated and real robot apparatuses. However, this is only the case when hand-centric observability is sufficient; otherwise, including a third-person perspective is necessary for learning, but also harms out-of-distribution generalization. To mitigate this, we propose to regularize the third-person information stream via a variational information bottleneck. On six representative manipulation tasks with varying hand-centric observability adapted from the Meta-World benchmark, this results in a state-of-the-art reinforcement learning agent operating from both perspectives improving its out-of-distribution generalization on every task. While some practitioners have long put cameras in the hands of robots, our work systematically analyzes the benefits of doing so and provides simple and broadly applicable insights for improving end-to-end learned vision-based robotic manipulation.
Poster Session 3 Tue 26 Apr 01:30 a.m.
[ Virtual ]

The large pre-trained BERT has achieved remarkable performance on Natural Language Processing (NLP) tasks but is also computation and memory expensive. As one of the powerful compression approaches, binarization extremely reduces the computation and memory consumption by utilizing 1-bit parameters and bitwise operations. Unfortunately, the full binarization of BERT (i.e., 1-bit weight, embedding, and activation) usually suffer a significant performance drop, and there is rare study addressing this problem. In this paper, with the theoretical justification and empirical analysis, we identify that the severe performance drop can be mainly attributed to the information degradation and optimization direction mismatch respectively in the forward and backward propagation, and propose BiBERT, an accurate fully binarized BERT, to eliminate the performance bottlenecks. Specifically, BiBERT introduces an efficient Bi-Attention structure for maximizing representation information statistically and a Direction-Matching Distillation (DMD) scheme to optimize the full binarized BERT accurately. Extensive experiments show that BiBERT outperforms both the straightforward baseline and existing state-of-the-art quantized BERTs with ultra-low bit activations by convincing margins on the NLP benchmark. As the first fully binarized BERT, our method yields impressive 56.3 times and 31.2 times saving on FLOPs and model size, demonstrating the vast advantages and potential of the fully binarized …
[ Virtual ]

Batch Normalization (BN) is a commonly used technique to accelerate and stabilize training of deep neural networks. Despite its empirical success, a full theoretical understanding of BN is yet to be developed. In this work, we analyze BN through the lens of convex optimization. We introduce an analytic framework based on convex duality to obtain exact convex representations of weight-decay regularized ReLU networks with BN, which can be trained in polynomial-time. Our analyses also show that optimal layer weights can be obtained as simple closed-form formulas in the high-dimensional and/or overparameterized regimes. Furthermore, we find that Gradient Descent provides an algorithmic bias effect on the standard non-convex BN network, and we design an approach to explicitly encode this implicit regularization into the convex objective. Experiments with CIFAR image classification highlight the effectiveness of this explicit regularization for mimicking and substantially improving the performance of standard BN networks.
[ Virtual ]

Deep neural networks (DNNs) are effective in solving many real-world problems. Larger DNN models usually exhibit better quality (e.g., accuracy) but their excessive computation results in long inference time. Model sparsification can reduce the computation and memory cost while maintaining model quality. Most existing sparsification algorithms unidirectionally remove weights, while others randomly or greedily explore a small subset of weights in each layer for pruning. The limitations of these algorithms reduce the level of achievable sparsity. In addition, many algorithms still require pre-trained dense models and thus suffer from large memory footprint. In this paper, we propose a novel scheduled grow-and-prune (GaP) methodology without having to pre-train a dense model. It addresses the shortcomings of the previous works by repeatedly growing a subset of layers to dense and then pruning them back to sparse after some training. Experiments show that the models pruned using the proposed methods match or beat the quality of the highly optimized dense models at 80% sparsity on a variety of tasks, such as image classification, objective detection, 3D object part segmentation, and translation. They also outperform other state-of-the-art (SOTA) methods for model sparsification. As an example, a 90% non-uniform sparse ResNet-50 model obtained via GaP …
[ Virtual ]

The prediction of quantum mechanical properties is historically plagued by a trade-off between accuracy and speed. Machine learning potentials have previously shown great success in this domain, reaching increasingly better accuracy while maintaining computational efficiency comparable with classical force fields. In this work we propose TorchMD-NET, a novel equivariant Transformer (ET) architecture, outperforming state-of-the-art on MD17, ANI-1, and many QM9 targets in both accuracy and computational efficiency. Through an extensive attention weight analysis, we gain valuable insights into the black box predictor and show differences in the learned representation of conformers versus conformations sampled from molecular dynamics or normal modes. Furthermore, we highlight the importance of datasets including off-equilibrium conformations for the evaluation of molecular potentials.
[ Virtual ]

We consider the problem of training a classification model with group annotated training data. Recent work has established that, if there is distribution shift across different groups, models trained using the standard empirical risk minimization (ERM) objective suffer from poor performance on minority groups and that group distributionally robust optimization (Group-DRO) objective is a better alternative. The starting point of this paper is the observation that though Group-DRO performs better than ERM on minority groups for some benchmark datasets, there are several other datasets where it performs much worse than ERM. Inspired by ideas from the closely related problem of domain generalization, this paper proposes a new and simple algorithm that explicitly encourages learning of features that are shared across various groups. The key insight behind our proposed algorithm is that while Group-DRO focuses on groups with worst regularized loss, focusing instead, on groups that enable better performance even on other groups, could lead to learning of shared/common features, thereby enhancing minority performance beyond what is achieved by Group-DRO. Empirically, we show that our proposed algorithm matches or achieves better performance compared to strong contemporary baselines including ERM and Group-DRO on standard benchmarks on both minority groups and across all …
[ Virtual ]

How to extract as much learning signal from each trajectory data has been a key problem in reinforcement learning (RL), where sample inefficiency has posed serious challenges for practical applications. Recent works have shown that using expressive policy function approximators and conditioning on future trajectory information -- such as future states in hindsight experience replay (HER) or returns-to-go in Decision Transformer (DT) -- enables efficient learning of multi-task policies, where at times online RL is fully replaced by offline behavioral cloning (BC), e.g. sequence modeling. We demonstrate that all these approaches are doing hindsight information matching (HIM) -- training policies that can output the rest of trajectory that matches some statistics of future state information. We present Generalized Decision Transformer (GDT) for solving any HIM problem, and show how different choices for the feature function and the anti-causal aggregator not only recover DT as a special case, but also lead to novel Categorical DT (CDT) and Bi-directional DT (BDT) for matching different statistics of the future. For evaluating CDT and BDT, we define offline multi-task state-marginal matching (SMM) and imitation learning (IL) as two generic HIM problems, propose a Wasserstein distance loss as a metric for both, and empirically study …
[ Virtual ]

Generative models are now capable of producing highly realistic images that look nearly indistinguishable from the data on which they are trained. This raises the question: if we have good enough generative models, do we still need datasets? We investigate this question in the setting of learning general-purpose visual representations from a black-box generative model rather than directly from data. Given an off-the-shelf image generator without any access to its training data, we train representations from the samples output by this generator. We compare several representation learning methods that can be applied to this setting, using the latent space of the generator to generate multiple "views" of the same semantic content. We show that for contrastive methods, this multiview data can naturally be used to identify positive pairs (nearby in latent space) and negative pairs (far apart in latent space). We find that the resulting representations rival or even outperform those learned directly from real data, but that good performance requires care in the sampling strategy applied and the training method. Generative models can be viewed as a compressed and organized copy of a dataset, and we envision a future where more and more "model zoos" proliferate while datasets become …
[ Virtual ]

Computational methods for predicting the interface contacts between proteins come highly sought after for drug discovery as they can significantly advance the accuracy of alternative approaches, such as protein-protein docking, protein function analysis tools, and other computational methods for protein bioinformatics. In this work, we present the Geometric Transformer, a novel geometry-evolving graph transformer for rotation and translation-invariant protein interface contact prediction, packaged within DeepInteract, an end-to-end prediction pipeline. DeepInteract predicts partner-specific protein interface contacts (i.e., inter-protein residue-residue contacts) given the 3D tertiary structures of two proteins as input. In rigorous benchmarks, DeepInteract, on challenging protein complex targets from the 13th and 14th CASP-CAPRI experiments as well as Docking Benchmark 5, achieves 14% and 1.1% top L/5 precision (L: length of a protein unit in a complex), respectively. In doing so, DeepInteract, with the Geometric Transformer as its graph-based backbone, outperforms existing methods for interface contact prediction in addition to other graph-based neural network backbones compatible with DeepInteract, thereby validating the effectiveness of the Geometric Transformer for learning rich relational-geometric features for downstream tasks on 3D protein structures.
[ Virtual ]

Question Answering (QA) has been a long-standing research topic in AI and NLP fields, and a wealth of studies has been conducted to attempt to equip QA systems with human-level reasoning capability. To approximate the complicated human reasoning process, state-of-the-art QA systems commonly use pre-trained language models (LMs) to access knowledge encoded in LMs together with elaborately designed modules based on Graph Neural Networks (GNNs) to perform reasoning over knowledge graphs (KGs). However, many problems remain open regarding the reasoning functionality of these GNN-based modules. Can these GNN-based modules really perform a complex reasoning process? Are they under- or over-complicated for QA? To open the black box of GNN and investigate these problems, we dissect state-of-the-art GNN modules for QA and analyze their reasoning capability. We discover that even a very simple graph neural counter can outperform all the existing GNN modules on CommonsenseQA and OpenBookQA, two popular QA benchmark datasets which heavily rely on knowledge-aware reasoning. Our work reveals that existing knowledge-aware GNN modules may only carry out some simple reasoning such as counting. It remains a challenging open problem to build comprehensive reasoning modules for knowledge-powered QA.
[ Virtual ]

Information sharing is key in building team cognition and enables coordination and cooperation. High-performing human teams also benefit from acting strategically with hierarchical levels of iterated communication and rationalizability, meaning a human agent can reason about the actions of their teammates in their decision-making. Yet, the majority of prior work in Multi-Agent Reinforcement Learning (MARL) does not support iterated rationalizability and only encourage inter-agent communication, resulting in a suboptimal equilibrium cooperation strategy. In this work, we show that reformulating an agent's policy to be conditional on the policies of its neighboring teammates inherently maximizes Mutual Information (MI) lower-bound when optimizing under Policy Gradient (PG). Building on the idea of decision-making under bounded rationality and cognitive hierarchy theory, we show that our modified PG approach not only maximizes local agent rewards but also implicitly reasons about MI between agents without the need for any explicit ad-hoc regularization terms. Our approach, InfoPG, outperforms baselines in learning emergent collaborative behaviors and sets the state-of-the-art in decentralized cooperative MARL tasks. Our experiments validate the utility of InfoPG by achieving higher sample efficiency and significantly larger cumulative reward in several complex cooperative multi-agent domains.
[ Virtual ]

Multi-omics data analysis has the potential to discover hidden molecular interactions, revealing potential regulatory and/or signal transduction pathways for cellular processes of interest when studying life and disease systems. One of critical challenges when dealing with real-world multi-omics data is that they may manifest heterogeneous structures and data quality as often existing data may be collected from different subjects under different conditions for each type of omics data. We propose a novel deep Bayesian generative model to efficiently infer a multi-partite graph encoding molecular interactions across such heterogeneous views, using a fused Gromov-Wasserstein (FGW) regularization between latent representations of corresponding views for integrative analysis. With such an optimal transport regularization in the deep Bayesian generative model, it not only allows incorporating view-specific side information, either with graph-structured or unstructured data in different views, but also increases the model flexibility with the distribution-based regularization. This allows efficient alignment of heterogeneous latent variable distributions to derive reliable interaction predictions compared to the existing point-based graph embedding methods. Our experiments on several real-world datasets demonstrate enhanced performance of MoReL in inferring meaningful interactions compared to existing baselines.
[ Virtual ]

Neural processes (NPs) aim to stochastically complete unseen data points based on a given context dataset. NPs essentially leverage a given dataset as a context representation to derive a suitable identifier for a novel task. To improve the prediction accuracy, many variants of NPs have investigated context embedding approaches that generally design novel network architectures and aggregation functions satisfying permutation invariant. In this work, we propose a stochastic attention mechanism for NPs to capture appropriate context information. From the perspective of information theory, we demonstrate that the proposed method encourages context embedding to be differentiated from a target dataset, allowing NPs to consider features in a target dataset and context embedding independently. We observe that the proposed method can appropriately capture context embedding even under noisy data sets and restricted task distributions, where typical NPs suffer from a lack of context embeddings. We empirically show that our approach substantially outperforms conventional NPs in various domains through 1D regression, predator-prey model, and image completion. Moreover, the proposed method is also validated by MovieLens-10k dataset, a real-world problem.
[ Virtual ]

We present Path Integral Sampler~(PIS), a novel algorithm to draw samples from unnormalized probability density functions. The PIS is built on the Schr\"odinger bridge problem which aims to recover the most likely evolution of a diffusion process given its initial distribution and terminal distribution. The PIS draws samples from the initial distribution and then propagates the samples through the Schr\"odinger bridge to reach the terminal distribution. Applying the Girsanov theorem, with a simple prior diffusion, we formulate the PIS as a stochastic optimal control problem whose running cost is the control energy and terminal cost is chosen according to the target distribution. By modeling the control as a neural network, we establish a sampling algorithm that can be trained end-to-end. We provide theoretical justification of the sampling quality of PIS in terms of Wasserstein distance when sub-optimal control is used. Moreover, the path integrals theory is used to compute importance weights of the samples to compensate for the bias induced by the sub-optimality of the controller and the time-discretization. We experimentally demonstrate the advantages of PIS compared with other start-of-the-art sampling methods on a variety of tasks.
[ Virtual ]

A major challenge in real-world reinforcement learning (RL) is the sparsity of reward feedback. Often, what is available is an intuitive but sparse reward function that only indicates whether the task is completed partially or fully. However, the lack of carefully designed, fine grain feedback implies that most existing RL algorithms fail to learn an acceptable policy in a reasonable time frame. This is because of the large number of exploration actions that the policy has to perform before it gets any useful feedback that it can learn from. In this work, we address this challenging problem by developing an algorithm that exploits the offline demonstration data generated by {a sub-optimal behavior policy} for faster and efficient online RL in such sparse reward settings. The proposed algorithm, which we call the Learning Online with Guidance Offline (LOGO) algorithm, merges a policy improvement step with an additional policy guidance step by using the offline demonstration data. The key idea is that by obtaining guidance from - not imitating - the offline {data}, LOGO orients its policy in the manner of the sub-optimal {policy}, while yet being able to learn beyond and approach optimality. We provide a theoretical analysis of our algorithm, …
[ Virtual ]

[ Virtual ]

Graph convolutional networks (GCNs) and their variants have achieved great success in dealing with graph-structured data. Nevertheless, it is well known that deep GCNs suffer from the over-smoothing problem, where node representations tend to be indistinguishable as more layers are stacked up. The theoretical research to date on deep GCNs has focused primarily on expressive power rather than trainability, an optimization perspective. Compared to expressivity, trainability attempts to address a more fundamental question: Given a sufficiently expressive space of models, can we successfully find a good solution via gradient descent-based optimizers? This work fills this gap by exploiting the Graph Neural Tangent Kernel (GNTK), which governs the optimization trajectory under gradient descent for wide GCNs. We formulate the asymptotic behaviors of GNTK in the large depth, which enables us to reveal the dropping trainability of wide and deep GCNs at an exponential rate in the optimization process. Additionally, we extend our theoretical framework to analyze residual connection-based techniques, which are found to be merely able to mitigate the exponential decay of trainability mildly. Inspired by our theoretical insights on trainability, we propose Critical DropEdge, a connectivity-aware and graph-adaptive sampling method, to alleviate the exponential decay problem more fundamentally. Experimental evaluation …

One practical challenge in reinforcement learning (RL) is how to make quick adaptations when faced with new environments. In this paper, we propose a principled framework for adaptive RL, called AdaRL, that adapts reliably and efficiently to changes across domains with a few samples from the target domain, even in partially observable environments. Specifically, we leverage a parsimonious graphical representation that characterizes structural relationships over variables in the RL system. Such graphical representations provide a compact way to encode what and where the changes across domains are, and furthermore inform us with a minimal set of changes that one has to consider for the purpose of policy adaptation. We show that by explicitly leveraging this compact representation to encode changes, we can efficiently adapt the policy to the target domain, in which only a few samples are needed and further policy optimization is avoided. We illustrate the efficacy of AdaRL through a series of experiments that vary factors in the observation, transition and reward functions for Cartpole and Atari games.

We introduce a deep generative model for representation learning of biological sequences that, unlike existing models, explicitly represents the evolutionary process. The model makes use of a tree-structured Ornstein-Uhlenbeck process, obtained from a given phylogenetic tree, as an informative prior for a variational autoencoder. We show the model performs well on the task of ancestral sequence reconstruction of single protein families. Our results and ablation studies indicate that the explicit representation of evolution using a suitable tree-structured prior has the potential to improve representation learning of biological sequences considerably. Finally, we briefly discuss extensions of the model to genomic-scale data sets and the case of a latent phylogenetic tree.

Instance-dependent label noise (IDN) widely exists in real-world datasets and usually misleads the training of deep neural networks. Noise transition matrix (NTM) (i.e., the probability that clean labels flip into noisy labels) is used to characterize the label noise and can be adopted to bridge the gap between clean and noisy underlying data distributions. However, most instances are long-tail, i.e., the number of occurrences of each instance is usually limited, which leads to the gap between the underlying distribution and the empirical distribution. Therefore, the genuine problem caused by IDN is \emph{empirical}, instead of underlying, \emph{data distribution mismatch} during training. To directly tackle the empirical distribution mismatch problem, we propose \emph{posterior transition matrix} (PTM) to posteriorly model label noise given limited observed noisy labels, which achieves \emph{statistically consistent classifiers}. Note that even if an instance is corrupted by the same NTM, the intrinsic randomness incurs different noisy labels, and thus requires different correction methods. Motivated by this observation, we propose an \textbf{I}nformation \textbf{F}usion (IF) approach to fine-tune the NTM based on the estimated PTM. Specifically, we adopt the noisy labels and model predicted probabilities to estimate the PTM and then correct the NTM in \emph{forward propagation}. Empirical evaluations on synthetic …

Neural collapse is a highly symmetric geometry of neural networks that emerges during the terminal phase of training, with profound implications on the generalization performance and robustness of the trained networks. To understand how the last-layer features and classifiers exhibit this recently discovered implicit bias, in this paper, we introduce a surrogate model called the unconstrained layer-peeled model (ULPM). We prove that gradient flow on this model converges to critical points of a minimum-norm separation problem exhibiting neural collapse in its global minimizer. Moreover, we show that the ULPM with the cross-entropy loss has a benign global landscape for its loss function, which allows us to prove that all the critical points are strict saddle points except the global minimizers that exhibit the neural collapse phenomenon. Empirically, we show that our results also hold during the training of neural networks in real-world tasks when explicit regularization or weight decay is not used.


Adversarial Training (AT) is known as an effective approach to enhance the robustness of deep neural networks. Recently researchers notice that robust models with AT have good generative ability and can synthesize realistic images, while the reason behind it is yet under-explored. In this paper, we demystify this phenomenon by developing a unified probabilistic framework, called Contrastive Energy-based Models (CEM). On the one hand, we provide the first probabilistic characterization of AT through a unified understanding of robustness and generative ability. On the other hand, our unified framework can be extended to the unsupervised scenario, which interprets unsupervised contrastive learning as an important sampling of CEM. Based on these, we propose a principled method to develop adversarial learning and sampling methods. Experiments show that the sampling methods derived from our framework improve the sample quality in both supervised and unsupervised learning. Notably, our unsupervised adversarial sampling method achieves an Inception score of 9.61 on CIFAR-10, which is superior to previous energy-based models and comparable to state-of-the-art generative models.

Graph self-supervised learning has gained increasing attention due to its capacity to learn expressive node representations. Many pretext tasks, or loss functions have been designed from distinct perspectives. However, we observe that different pretext tasks affect downstream tasks differently cross datasets, which suggests that searching pretext tasks is crucial for graph self-supervised learning. Different from existing works focusing on designing single pretext tasks, this work aims to investigate how to automatically leverage multiple pretext tasks effectively. Nevertheless, evaluating representations derived from multiple pretext tasks without direct access to ground truth labels makes this problem challenging. To address this obstacle, we make use of a key principle of many real-world graphs, i.e., homophily, or the principle that ``like attracts like,'' as the guidance to effectively search various self-supervised pretext tasks. We provide theoretical understanding and empirical evidence to justify the flexibility of homophily in this search task. Then we propose the AutoSSL framework which can automatically search over combinations of various self-supervised tasks. By evaluating the framework on 7 real-world datasets, our experimental results show that AutoSSL can significantly boost the performance on downstream tasks including node clustering and node classification compared with training under individual tasks.

Optimizing an objective function with uncertainty awareness is well-known to improve the accuracy and confidence of optimization solutions. Meanwhile, another relevant but very different question remains yet open: how to model and quantify the uncertainty of an optimization algorithm (a.k.a., optimizer) itself? To close such a gap, the prerequisite is to consider the optimizers as sampled from a distribution, rather than a few prefabricated and fixed update rules. We first take the novel angle to consider the algorithmic space of optimizers, and provide definitions for the optimizer prior and likelihood, that intrinsically determine the posterior and therefore uncertainty. We then leverage the recent advance of learning to optimize (L2O) for the space parameterization, with the end-to-end training pipeline built via variational inference, referred to as uncertainty-aware L2O (UA-L2O). Our study represents the first effort to recognize and quantify the uncertainty of the optimization algorithm. The extensive numerical results show that, UA-L2O achieves superior uncertainty calibration with accurate confidence estimation and tight confidence intervals, suggesting the improved posterior estimation thanks to considering optimizer uncertainty. Intriguingly, UA-L2O even improves optimization performances for two out of three test functions, the loss function in data privacy attack, and four of five cases of the …

Recently, contrastive learning has risen to be a promising approach for large-scale self-supervised learning. However, theoretical understanding of how it works is still unclear. In this paper, we propose a new guarantee on the downstream performance without resorting to the conditional independence assumption that is widely adopted in previous work but hardly holds in practice. Our new theory hinges on the insight that the support of different intra-class samples will become more overlapped under aggressive data augmentations, thus simply aligning the positive samples (augmented views of the same sample) could make contrastive learning cluster intra-class samples together. Based on this augmentation overlap perspective, theoretically, we obtain asymptotically closed bounds for downstream performance under weaker assumptions, and empirically, we propose an unsupervised model selection metric ARC that aligns well with downstream accuracy. Our theory suggests an alternative understanding of contrastive learning: the role of aligning positive samples is more like a surrogate task than an ultimate goal, and the overlapped augmented views (i.e., the chaos) create a ladder for contrastive learning to gradually learn class-separated representations. The code for computing ARC is available at https://github.com/zhangq327/ARC.

Recently, deep AUC maximization (DAM) has achieved great success in different domains (e.g., medical image classification). However, the end-to-end training for deep AUC maximization still remains a challenging problem. Previous studies employ an ad-hoc two-stage approach that first trains the network by optimizing a traditional loss (e.g., cross-entropy loss) and then finetunes the network by optimizing an AUC loss. This is because that training a deep neural network from scratch by maximizing an AUC loss usually does not yield a satisfactory performance. This phenomenon can be attributed to the degraded feature representations learned by maximizing the AUC loss from scratch. To address this issue, we propose a novel compositional training framework for end-to-end DAM, namely compositional DAM. The key idea of compositional training is to minimize a compositional objective function, where the outer function corresponds to an AUC loss and the inner function represents a gradient descent step for minimizing a traditional loss, e.g., the cross-entropy (CE) loss. To optimize the non-standard compositional objective, we propose an efficient and provable stochastic optimization algorithm. The proposed algorithm enhances the capabilities of both robust feature learning and robust classifier learning by alternatively taking a gradient descent step for the CE loss and …

We present a conditional variational auto-encoder (VAE) which, to avoid the substantial cost of training from scratch, uses an architecture and training objective capable of leveraging a foundation model in the form of a pretrained unconditional VAE. To train the conditional VAE, we only need to train an artifact to perform amortized inference over the unconditional VAE's latent variables given a conditioning input. We demonstrate our approach on tasks including image inpainting, for which it outperforms state-of-the-art GAN-based approaches at faithfully representing the inherent uncertainty. We conclude by describing a possible application of our inpainting model, in which it is used to perform Bayesian experimental design for the purpose of guiding a sensor.

Most current few-shot learning methods train a model from abundantly labeled base category data and then transfer and adapt the model to sparsely labeled novel category data. These methods mostly generalize well on novel categories from the same domain as the base categories but perform poorly for distant domain categories. In this paper, we propose a framework for few-shot learning coined as ConFeSS (Contrastive Learning and Feature Selection System) that tackles large domain shift between base and novel categories. The first step of our framework trains a feature extracting backbone with the contrastive loss on the base category data. Since the contrastive loss does not use supervision, the features can generalize better to distant target domains. For the second step, we train a masking module to select relevant features that are more suited to target domain classification. Finally, a classifier is fine-tuned along with the backbone such that the backbone produces features similar to the relevant ones. To evaluate our framework, we tested it on a recently introduced cross-domain few-shot learning benchmark. Experimental results demonstrate that our framework outperforms all meta-learning approaches and produces competitive results against recent cross-domain methods. Additional analyses are also performed to better understand our framework.

Learning multiple tasks sequentially without forgetting previous knowledge, called Continual Learning(CL), remains a long-standing challenge for neural networks. Most existing methods rely on additional network capacity or data replay. In contrast, we introduce a novel approach which we refer to as Recursive Gradient Optimization(RGO). RGO is composed of an iteratively updated optimizer that modifies the gradient to minimize forgetting without data replay and a virtual Feature Encoding Layer(FEL) that represents different long-term structures with only task descriptors. Experiments demonstrate that RGO has significantly better performance on popular continual classification benchmarks when compared to the baselines and achieves new state-of-the-art performance on 20-split-CIFAR100(82.22%) and 20-split-miniImageNet(72.63%). With higher average accuracy than Single-Task Learning(STL), this method is flexible and reliable to provide continual learning capabilities for learning models that rely on gradient descent.

Existing continual learning methods use Batch Normalization (BN) to facilitate training and improve generalization across tasks. However, the non-i.i.d and non-stationary nature of continual learning data, especially in the online setting, amplify the discrepancy between training and testing in BN and hinder the performance of older tasks. In this work, we study the cross-task normalization effect of BN in online continual learning where BN normalizes the testing data using moments biased towards the current task, resulting in higher catastrophic forgetting. This limitation motivates us to propose a simple yet effective method that we call Continual Normalization (CN) to facilitate training similar to BN while mitigating its negative effect. Extensive experiments on different continual learning algorithms and online scenarios show that CN is a direct replacement for BN and can provide substantial performance improvements. Our implementation will be made publicly available upon acceptance.


Cross-domain object detection is more challenging than object classification since multiple objects exist in an image and the location of each object is unknown in the unlabeled target domain. As a result, when we adapt features of different objects to enhance the transferability of the detector, the features of the foreground and the background are easy to be confused, which may hurt the discriminability of the detector. Besides, previous methods focused on category adaptation but ignored another important part for object detection, i.e., the adaptation on bounding box regression. To this end, we propose D-adapt, namely Decoupled Adaptation, to decouple the adversarial adaptation and the training of the detector. Besides, we fill the blank of regression domain adaptation in object detection by introducing a bounding box adaptor. Experiments show that \textit{D-adapt} achieves state-of-the-art results on four cross-domain object detection tasks and yields 17\% and 21\% relative improvement on benchmark datasets Clipart1k and Comic2k in particular.

Implicit shape models are promising 3D representations for modeling arbitrary locations, with Signed Distance Functions (SDFs) particularly suitable for clear mesh surface reconstruction. Existing approaches for single object reconstruction impose supervision signals based on the loss of the signed distance value from all locations in a scene, posing difficulties when extending to real-world scenarios. The spatial gradient of the signed distance field, rather than the SDF value itself, has not been typically employed as a source of supervision for single-view reconstruction, in part due to the difficulties of differentiable sampling a spatial gradient from the feature map. In this study, we derive a novel closed-form gradient sampling solution for Differentialble Gradient Sampling (DGS) that enables backpropagation of the loss of the spatial gradient back to the feature map pixels, thus allowing the imposition of the loss efficiently on the spatial gradient. As a result, we achieve high-quality single view indoor scene reconstruction results learning directly from a real-world scanned dataset (e.g. ScannetV2). Our model also performs well when generalizing to unseen images downloaded directly from the internet (Fig. 1). We comfortably advanced the state-of-the-art results with several established datasets including ShapeNet and ScannetV2; extensive quantitative analysis confirmed that our proposed …


Quantifying the data uncertainty in learning tasks is often done by learning a prediction interval or prediction set of the label given the input. Two commonly desired properties for learned prediction sets are \emph{valid coverage} and \emph{good efficiency} (such as low length or low cardinality). Conformal prediction is a powerful technique for learning prediction sets with valid coverage, yet by default its conformalization step only learns a single parameter, and does not optimize the efficiency over more expressive function classes. In this paper, we propose a generalization of conformal prediction to multiple learnable parameters, by considering the constrained empirical risk minimization (ERM) problem of finding the most efficient prediction set subject to valid empirical coverage. This meta-algorithm generalizes existing conformal prediction algorithms, and we show that it achieves approximate valid population coverage and near-optimal efficiency within class, whenever the function class in the conformalization step is low-capacity in a certain sense. Next, this ERM problem is challenging to optimize as it involves a non-differentiable coverage constraint. We develop a gradient-based algorithm for it by approximating the original constrained ERM using differentiable surrogate losses and Lagrangians. Experiments show that our algorithm is able to learn valid prediction sets and improve the …
Emergent communication aims for a better understanding of human language evolution and building more efficient representations. We posit that reaching these goals will require scaling up, in contrast to a significant amount of literature that focuses on setting up small-scale problems to tease out desired properties of the emergent languages. We focus on three independent aspects to scale up, namely the dataset, task complexity, and population size. We provide a first set of results for large populations solving complex tasks on realistic large-scale datasets, as well as an easy-to-use codebase to enable further experimentation. In more complex tasks and datasets, we find that RL training can become unstable, but responds well to established stabilization techniques.We also identify the need for a different metric than topographic similarity, which does not correlate with the generalization performances when working with natural images. In this context, we probe ease-of-learnability and transfer methods to assess emergent languages. Finally, we observe that larger populations do not induce robust emergent protocols with high generalization performance, leading us to explore different ways to leverage population, through voting and imitation learning.

The ability of discovering feature interactions in a black-box model is vital to explainable deep learning. We propose a principled, global interaction detection method by casting our target as a multi-arm bandits problem and solving it swiftly with the UCB algorithm. This adaptive method is free of ad-hoc assumptions and among the cutting-edge methods with outstanding detection accuracy and stability. Based on the detection outcome, a lightweight and interpretable deep learning model (called ParaACE) is further built using the alternating conditional expectation (ACE) method. Our proposed ParaACE improves the prediction performance by 26 % and reduces the model size by 100+ times as compared to its Teacher model over various datasets. Furthermore, we show the great potential of our method for scientific discovery through interpreting various real datasets in the economics and smart medicine sectors. The code is available at https://github.com/zhangtj1996/ParaACE.

Although Shapley values are theoretically appealing for explaining black-box models, they are costly to calculate and thus impractical in settings that involve large, high-dimensional models. To remedy this issue, we introduce FastSHAP, a new method for estimating Shapley values in a single forward pass using a learned explainer model. To enable efficient training without requiring ground truth Shapley values, we develop an approach to train FastSHAP via stochastic gradient descent using a weighted least-squares objective function. In our experiments with tabular and image datasets, we compare FastSHAP to existing estimation approaches and find that it generates accurate explanations with an orders-of-magnitude speedup.

Federated learning has evolved to improve a single global model under data heterogeneity (as a curse) or to develop multiple personalized models using data heterogeneity (as a blessing). However, little research has considered both directions simultaneously. In this paper, we first investigate the relationship between them by analyzing Federated Averaging at the client level and determine that a better federated global model performance does not constantly improve personalization. To elucidate the cause of this personalization performance degradation problem, we decompose the entire network into the body (extractor), which is related to universality, and the head (classifier), which is related to personalization. We then point out that this problem stems from training the head. Based on this observation, we propose a novel federated learning algorithm, coined FedBABU, which only updates the body of the model during federated training (i.e., the head is randomly initialized and never updated), and the head is fine-tuned for personalization during the evaluation process. Extensive experiments show consistent performance improvements and an efficient personalization of FedBABU. The code is available at https://github.com/jhoon-oh/FedBABU.

In the deep learning era, long video generation of high-quality still remains challenging due to the spatio-temporal complexity and continuity of videos. Existing prior works have attempted to model video distribution by representing videos as 3D grids of RGB values, which impedes the scale of generated videos and neglects continuous dynamics. In this paper, we found that the recent emerging paradigm of implicit neural representations (INRs) that encodes a continuous signal into a parameterized neural network effectively mitigates the issue. By utilizing INRs of video, we propose dynamics-aware implicit generative adversarial network (DIGAN), a novel generative adversarial network for video generation. Specifically, we introduce (a) an INR-based video generator that improves the motion dynamics by manipulating the space and time coordinates differently and (b) a motion discriminator that efficiently identifies the unnatural motions without observing the entire long frame sequences. We demonstrate the superiority of DIGAN under various datasets, along with multiple intriguing properties, e.g., long video synthesis, video extrapolation, and non-autoregressive video generation. For example, DIGAN improves the previous state-of-the-art FVD score on UCF-101 by 30.7% and can be trained on 128 frame videos of 128x128 resolution, 80 frames longer than the 48 frames of the previous state-of-the-art method.

Predicting molecular conformations from molecular graphs is a fundamental problem in cheminformatics and drug discovery. Recently, significant progress has been achieved with machine learning approaches, especially with deep generative models. Inspired by the diffusion process in classical non-equilibrium thermodynamics where heated particles will diffuse from original states to a noise distribution, in this paper, we propose a novel generative model named GeoDiff for molecular conformation prediction. GeoDiff treats each atom as a particle and learns to directly reverse the diffusion process (i.e., transforming from a noise distribution to stable conformations) as a Markov chain. Modeling such a generation process is however very challenging as the likelihood of conformations should be roto-translational invariant. We theoretically show that Markov chains evolving with equivariant Markov kernels can induce an invariant distribution by design, and further propose building blocks for the Markov kernels to preserve the desirable equivariance property. The whole framework can be efficiently trained in an end-to-end fashion by optimizing a weighted variational lower bound to the (conditional) likelihood. Experiments on multiple benchmarks show that GeoDiff is superior or comparable to existing state-of-the-art approaches, especially on large molecules.

In many real-world node classification scenarios, nodes are highly class-imbalanced, where graph neural networks (GNNs) can be readily biased to major class instances. Albeit existing class imbalance approaches in other domains can alleviate this issue to some extent, they do not consider the impact of message passing between nodes. In this paper, we hypothesize that overfitting to the neighbor sets of minor class due to message passing is a major challenge for class-imbalanced node classification. To tackle this issue, we propose GraphENS, a novel augmentation method that synthesizes the whole ego network for minor class (minor node and its one-hop neighbors) by combining two different ego networks based on their similarity. Additionally, we introduce a saliency-based node mixing method to exploit the abundant class-generic attributes of other nodes while blocking the injection of class-specific features. Our approach consistently outperforms the baselines over multiple node classification benchmark datasets and architectures.

Answering complex questions about textual narratives requires reasoning over both stated context and the world knowledge that underlies it. However, pretrained language models (LM), the foundation of most modern QA systems, do not robustly represent latent relationships between concepts, which is necessary for reasoning. While knowledge graphs (KG) are often used to augment LMs with structured representations of world knowledge, it remains an open question how to effectively fuse and reason over the KG representations and the language context, which provides situational constraints and nuances. In this work, we propose GreaseLM, a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations. Information from both modalities propagates to the other, allowing language context representations to be grounded by structured world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in the context to inform the graph representations of knowledge. Our results on three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA) and medical question answering (i.e., MedQA-USMLE) domains demonstrate that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.

The task of hot-refresh model upgrades of image retrieval systems plays an essential role in the industry but has never been investigated in academia before. Conventional cold-refresh model upgrades can only deploy new models after the gallery is overall backfilled, taking weeks or even months for massive data. In contrast, hot-refresh model upgrades deploy the new model immediately and then gradually improve the retrieval accuracy by backfilling the gallery on-the-fly. Compatible training has made it possible, however, the problem of model regression with negative flips poses a great challenge to the stable improvement of user experience. We argue that it is mainly due to the fact that new-to-old positive query-gallery pairs may show less similarity than new-to-new negative pairs. To solve the problem, we introduce a Regression-Alleviating Compatible Training (RACT) method to properly constrain the feature compatibility while reducing negative flips. The core is to encourage the new-to-old positive pairs to be more similar than both the new-to-old negative pairs and the new-to-new negative pairs. An efficient uncertainty-based backfilling strategy is further introduced to fasten accuracy improvements. Extensive experiments on large-scale retrieval benchmarks (e.g., Google Landmark) demonstrate that our RACT effectively alleviates the model regression for one more step towards …
Reinforcement learning (RL) experiments have notoriously high variance, and minor details can have disproportionately large effects on measured outcomes. This is problematic for creating reproducible research and also serves as an obstacle when applying RL to sensitive real-world applications. In this paper, we investigate causes for this perceived instability. To allow for an in-depth analysis, we focus on a specifically popular setup with high variance -- continuous control from pixels with an actor-critic agent. In this setting, we demonstrate that poor outlier runs which completely fail to learn are an important source of variance, but that weight initialization and initial exploration are not at fault. We show that one cause for these outliers is unstable network parametrization which leads to saturating nonlinearities. We investigate several fixes to this issue and find that simply normalizing penultimate features is surprisingly effective. For sparse tasks, we also find that partially disabling clipped double Q-learning decreases variance. By combining fixes we significantly decrease variances, lowering the average standard deviation across 21 tasks by a factor >3 for a state-of-the-art agent. This demonstrates that the perceived variance is not necessarily inherent to RL. Instead, it may be addressed via simple modifications and we argue that …

Antibodies are versatile proteins that bind to pathogens like viruses and stimulate the adaptive immune system. The specificity of antibody binding is determined by complementarity-determining regions (CDRs) at the tips of these Y-shaped proteins. In this paper, we propose a generative model to automatically design the CDRs of antibodies with enhanced binding specificity or neutralization capabilities. Previous generative approaches formulate protein design as a structure-conditioned sequence generation task, assuming the desired 3D structure is given a priori. In contrast, we propose to co-design the sequence and 3D structure of CDRs as graphs. Our model unravels a sequence autoregressively while iteratively refining its predicted global structure. The inferred structure in turn guides subsequent residue choices. For efficiency, we model the conditional dependence between residues inside and outside of a CDR in a coarse-grained manner. Our method achieves superior log-likelihood on the test set and outperforms previous baselines in designing antibodies capable of neutralizing the SARS-CoV-2 virus.

Modern language models can generate high-quality short texts. However, they often meander or are incoherent when generating longer texts. These issues arise from the next-token-only language modeling objective. To address these issues, we introduce Time Control (TC), a language model that implicitly plans via a latent stochastic process. TC does this by learning a representation which maps the dynamics of how text changes in a document to the dynamics of a stochastic process of interest. Using this representation, the language model can generate text by first implicitly generating a document plan via a stochastic process, and then generating text that is consistent with this latent plan. Compared to domain-specific methods and fine-tuning GPT2 across a variety of text domains, TC improves performance on text infilling and discourse coherence. On long text generation settings, TC preserves the text structure both in terms of ordering (up to +40% better) and text length consistency (up to +17% better). Human evaluators also prefer TC's output 28.6% more than the baselines.

Sequential training from task to task is becoming one of the major objects in deep learning applications such as continual learning and transfer learning. Nevertheless, it remains unclear under what conditions the trained model's performance improves or deteriorates. To deepen our understanding of sequential training, this study provides a theoretical analysis of generalization performance in a solvable case of continual learning. We consider neural networks in the neural tangent kernel (NTK) regime that continually learn target functions from task to task, and investigate the generalization by using an established statistical mechanical analysis of kernel ridge-less regression. We first show characteristic transitions from positive to negative transfer. More similar targets above a specific critical value can achieve positive knowledge transfer for the subsequent task while catastrophic forgetting occurs even with very similar targets. Next, we investigate a variant of continual learning which supposes the same target function in multiple tasks. Even for the same target, the trained model shows some transfer and forgetting depending on the sample size of each task. We can guarantee that the generalization error monotonically decreases from task to task for equal sample sizes while unbalanced sample sizes deteriorate the generalization. We respectively refer to these improvement …

From the intuitive notion of disentanglement, the image variations corresponding to different generative factors should be distinct from each other, and the disentangled representation should reflect those variations with separate dimensions. To discover the generative factors and learn disentangled representation, previous methods typically leverage an extra regularization term when learning to generate realistic images. However, the term usually results in a trade-off between disentanglement and generation quality. For the generative models pretrained without any disentanglement term, the generated images show semantically meaningful variations when traversing along different directions in the latent space. Based on this observation, we argue that it is possible to mitigate the trade-off by (i) leveraging the pretrained generative models with high generation quality, (ii) focusing on discovering the traversal directions as generative factors for disentangled representation learning. To achieve this, we propose Disentaglement via Contrast (DisCo) as a framework to model the variations based on the target disentangled representations, and contrast the variations to jointly discover disentangled directions and learn disentangled representations. DisCo achieves the state-of-the-art disentangled representation learning and distinct direction discovering, given pretrained non-disentangled generative models including GAN, VAE, and Flow. Source code is at https://github.com/xrenaa/DisCo.

How to learn an effective reinforcement learning-based model for control tasks from high-level visual observations is a practical and challenging problem. A key to solving this problem is to learn low-dimensional state representations from observations, from which an effective policy can be learned. In order to boost the learning of state encoding, recent works are focused on capturing behavioral similarities between state representations or applying data augmentation on visual observations. In this paper, we propose a novel meta-learner-based framework for representation learning regarding behavioral similarities for reinforcement learning. Specifically, our framework encodes the high-dimensional observations into two decomposed embeddings regarding reward and dynamics in a Markov Decision Process (MDP). A pair of meta-learners are developed, one of which quantifies the reward similarity and the other quantifies dynamics similarity over the correspondingly decomposed embeddings. The meta-learners are self-learned to update the state embeddings by approximating two disjoint terms in on-policy bisimulation metric. To incorporate the reward and dynamics terms, we further develop a strategy to adaptively balance their impacts based on different tasks or environments. We empirically demonstrate that our proposed framework outperforms state-of-the-art baselines on several benchmarks, including conventional DM Control Suite, Distracting DM Control Suite and a self-driving task …

We propose to address quadrupedal locomotion tasks using Reinforcement Learning (RL) with a Transformer-based model that learns to combine proprioceptive information and high-dimensional depth sensor inputs. While learning-based locomotion has made great advances using RL, most methods still rely on domain randomization for training blind agents that generalize to challenging terrains. Our key insight is that proprioceptive states only offer contact measurements for immediate reaction, whereas an agent equipped with visual sensory observations can learn to proactively maneuver environments with obstacles and uneven terrain by anticipating changes in the environment many steps ahead. In this paper, we introduce LocoTransformer, an end-to-end RL method that leverages both proprioceptive states and visual observations for locomotion control. We evaluate our method in challenging simulated environments with different obstacles and uneven terrain. We transfer our learned policy from simulation to a real robot by running it indoor and in-the-wild with unseen obstacles and terrain. Our method not only significantly improves over baselines, but also achieves far better generalization performance, especially when transferred to the real robot. Our project page with videos is at https://rchalyang.github.io/LocoTransformer/.

In novel class discovery (NCD), we are given labeled data from seen classes and unlabeled data from unseen classes, and we train clustering models for the unseen classes. However, the implicit assumptions behind NCD are still unclear. In this paper, we demystify assumptions behind NCD and find that high-level semantic features should be shared among the seen and unseen classes. Based on this finding, NCD is theoretically solvable under certain assumptions and can be naturally linked to meta-learning that has exactly the same assumption as NCD. Thus, we can empirically solve the NCD problem by meta-learning algorithms after slight modifications. This meta-learning-based methodology significantly reduces the amount of unlabeled data needed for training and makes it more practical, as demonstrated in experiments. The use of very limited data is also justified by the application scenario of NCD: since it is unnatural to label only seen-class data, NCD is sampling instead of labeling in causality. Therefore, unseen-class data should be collected on the way of collecting seen-class data, which is why they are novel and first need to be clustered.


Recently many neural models have been proposed to solve combinatorial puzzles by implicitly learning underlying constraints using their solved instances, such as sudoku or graph coloring (GCP). One drawback of the proposed architectures, which are often based on Graph Neural Networks (GNN) (Zhou et al., 2020), is that they cannot generalize across the size of the output space from which variables are assigned a value, for example, set of colors in a GCP, or board-size in sudoku. We call the output space for the variables as ‘value-set’. While many works have demonstrated generalization of GNNs across graph size, there has been no study on how to design a GNN for achieving value-set invariance for problems that come from the same domain. For example, learning to solve 16 x 16 sudoku after being trained on only 9 x 9 sudokus, or coloring a 7 colorable graph after training on 4 colorable graphs. In this work, we propose novel methods to extend GNN based architectures to achieve value-set invariance. Specifically, our model builds on recently proposed Recurrent Relational Networks (RRN) (Palm et al., 2018). Our first approach exploits the graph-size invariance of GNNs by converting a multi-class node classification problem into a …

Aiming to find a program satisfying the user intent given input-output examples, program synthesis has attracted increasing interest in the area of machine learning. Despite the promising performance of existing methods, most of their success comes from the privileged information of well-designed input-output examples. However, providing such input-output examples is unrealistic because it requires the users to have the ability to describe the underlying program with a few input-output examples under the training distribution. In this work, we propose a query-based framework that trains a query neural network to generate informative input-output examples automatically and interactively from a large query space. The quality of the query depends on the amount of the mutual information between the query and the corresponding program, which can guide the optimization of the query framework. To estimate the mutual information more accurately, we introduce the functional space (F-space) which models the relevance between the input-output examples and the programs in a differentiable way. We evaluate the effectiveness and generalization of the proposed query-based framework on the Karel task and the list processing task. Experimental results show that the query-based framework can generate informative input-output examples which achieveand even outperform well-designed input-output examples.
A more realistic object detection paradigm, Open-World Object Detection, has arised increasing research interests in the community recently. A qualified open-world object detector can not only identify objects of known categories, but also discover unknown objects, and incrementally learn to categorize them when their annotations progressively arrive. Previous works rely on independent modules to recognize unknown categories and perform incremental learning, respectively. In this paper, we provide a unified perspective: Semantic Topology. During the life-long learning of an open-world object detector, all object instances from the same category are assigned to their corresponding pre-defined node in the semantic topology, including the `unknown' category. This constraint builds up discriminative feature representations and consistent relationships among objects, thus enabling the detector to distinguish unknown objects out of the known categories, as well as making learned features of known objects undistorted when learning new categories incrementally. Extensive experiments demonstrate that semantic topology, either randomly-generated or derived from a well-trained language model, could outperform the current state-of-the-art open-world object detectors by a large margin, e.g., the absolute open-set error (the number of unknown instances that are wrongly labeled as known) is reduced from 7832 to 2546, exhibiting the inherent superiority of semantic topology on …

In image generation, generative models can be evaluated naturally by visually inspecting model outputs. However, this is not always the case for graph generative models (GGMs), making their evaluation challenging. Currently, the standard process for evaluating GGMs suffers from three critical limitations: i) it does not produce a single score which makes model selection challenging, ii) in many cases it fails to consider underlying edge and node features, and iii) it is prohibitively slow to perform. In this work, we mitigate these issues by searching for \emph{scalar, domain-agnostic, and scalable metrics} for evaluating and ranking GGMs. To this end, we study existing GGM metrics and neural-network-based metrics emerging from generative models of images that use embeddings extracted from a task-specific network. Motivated by the power of Graph Neural Networks (GNNs) to extract meaningful graph representations \emph{without any training}, we introduce several metrics based on the features extracted by an untrained random GNN. We design experiments to thoroughly test and objectively score metrics on their ability to measure the diversity and fidelity of generated graphs, as well as their sample and computational efficiency. Depending on the quantity of samples, we recommend one of two metrics from our collection of random-GNN-based metrics. …

A dataset is a shred of crucial evidence to describe a task. However, each data point in the dataset does not have the same potential, as some of the data points can be more representative or informative than others. This unequal importance among the data points may have a large impact in rehearsal-based continual learning, where we store a subset of the training examples (coreset) to be replayed later to alleviate catastrophic forgetting. In continual learning, the quality of the samples stored in the coreset directly affects the model's effectiveness and efficiency. The coreset selection problem becomes even more important under realistic settings, such as imbalanced continual learning or noisy data scenarios. To tackle this problem, we propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration and trains them in an online manner. Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting. We validate the effectiveness of our coreset selection mechanism over various standard, imbalanced, and noisy datasets against strong continual learning baselines, demonstrating that it improves task adaptation and prevents catastrophic forgetting in …

Semi-Supervised Learning (SSL) is fundamentally a missing label problem, in which the label Missing Not At Random (MNAR) problem is more realistic and challenging, compared to the widely-adopted yet naive Missing Completely At Random assumption where both labeled and unlabeled data share the same class distribution. Different from existing SSL solutions that overlook the role of ''class'' in causing the non-randomness, e.g., users are more likely to label popular classes, we explicitly incorporate ''class'' into SSL. Our method is three-fold: 1) We propose Class-Aware Propensity (CAP) that exploits the unlabeled data to train an improved classifier using the biased labeled data. 2) To encourage rare class training, whose model is low-recall but high-precision that discards too many pseudo-labeled data, we propose Class-Aware Imputation (CAI) that dynamically decreases (or increases) the pseudo-label assignment threshold for rare (or frequent) classes. 3) Overall, we integrate CAP and CAI into a Class-Aware Doubly Robust (CADR) estimator for training an unbiased SSL model. Under various MNAR settings and ablations, our method not only significantly outperforms existing baselines, but also surpasses other label bias removal SSL methods.

Recently, prefix-tuning has gained increasing attention as a parameter-efficient finetuning method for large-scale pretrained language models. The method keeps the pretrained models fixed and only updates the prefix token parameters for each downstream task. Despite being lightweight and modular, prefix-tuning still lacks robustness to textual adversarial attacks. However, most currently developed defense techniques necessitate auxiliary model update and storage, which inevitably hamper the modularity and low storage of prefix-tuning. In this work, we propose a robust prefix-tuning framework that preserves the efficiency and modularity of prefix-tuning. The core idea of our framework is leveraging the layerwise activations of the language model by correctly-classified training data as the standard for additional prefix finetuning. During the test phase, an extra batch-level prefix is tuned for each batch and added to the original prefix for robustness enhancement. Extensive experiments on three text classification benchmarks show that our framework substantially improves robustness over several strong baselines against five textual attacks of different types while maintaining comparable accuracy on clean texts. We also interpret our robust prefix-tuning framework from the optimal control perspective and pose several directions for future research.

Our world is full of asymmetries. Gravity and wind can make reaching a place easier than coming back. Social artifacts such as genealogy charts and citation graphs are inherently directed. In reinforcement learning and control, optimal goal-reaching strategies are rarely reversible (symmetrical). Distance functions supported on these asymmetrical structures are called quasimetrics. Despite their common appearance, little research has been done on the learning of quasimetrics. Our theoretical analysis reveals that a common class of learning algorithms, including unconstrained multilayer perceptrons (MLPs), provably fails to learn a quasimetric consistent with training data. In contrast, our proposed Poisson Quasimetric Embedding (PQE) is the first quasimetric learning formulation that both is learnable with gradient-based optimization and enjoys strong performance guarantees. Experiments on random graphs, social graphs, and offline Q-learning demonstrate its effectiveness over many common baselines.

Spiking Neural Networks (SNNs) have gained great attraction due to their distinctive properties of low power consumption and fast inference on neuromorphic hardware. As the most effective method to get deep SNNs, ANN-SNN conversion has achieved comparable performance as ANNs on large-scale datasets. Despite this, it requires long time-steps to match the firing rates of SNNs to the activation of ANNs. As a result, the converted SNN suffers severe performance degradation problems with short time-steps, which hamper the practical application of SNNs. In this paper, we theoretically analyze ANN-SNN conversion error and derive the estimated activation function of SNNs. Then we propose the quantization clip-floor-shift activation function to replace the ReLU activation function in source ANNs, which can better approximate the activation function of SNNs. We prove that the expected conversion error between SNNs and ANNs is zero, enabling us to achieve high-accuracy and ultra-low-latency SNNs. We evaluate our method on CIFAR-10/100 and ImageNet datasets, and show that it outperforms the state-of-the-art ANN-SNN and directly trained SNNs in both accuracy and time-steps. To the best of our knowledge, this is the first time to explore high-performance ANN-SNN conversion with ultra-low latency (4 time-steps). Code is available at https://github.com/putshua/SNNconversionQCFS


We propose a probabilistic shape completion method extended to the continuous geometry of large-scale 3D scenes. Real-world scans of 3D scenes suffer from a considerable amount of missing data cluttered with unsegmented objects. The problem of shape completion is inherently ill-posed, and high-quality result requires scalable solutions that consider multiple possible outcomes. We employ the Generative Cellular Automata that learns the multi-modal distribution and transform the formulation to process large-scale continuous geometry. The local continuous shape is incrementally generated as a sparse voxel embedding, which contains the latent code for each occupied cell. We formally derive that our training objective for the sparse voxel embedding maximizes the variational lower bound of the complete shape distribution and therefore our progressive generation constitutes a valid generative model. Experiments show that our model successfully generates diverse plausible scenes faithful to the input, especially when the input suffers from a significant amount of missing data. We also demonstrate that our approach outperforms deterministic models even in less ambiguous cases with a small amount of missing data, which infers that probabilistic formulation is crucial for high-quality geometry completion on input scans exhibiting any levels of completeness.


Continual learning (CL) aims to learn a sequence of tasks without forgetting the previously acquired knowledge. However, recent CL advances are restricted to supervised continual learning (SCL) scenarios. Consequently, they are not scalable to real-world applications where the data distribution is often biased and unannotated. In this work, we focus on unsupervised continual learning (UCL), where we learn the feature representations on an unlabelled sequence of tasks and show that reliance on annotated data is not necessary for continual learning. We conduct a systematic study analyzing the learned feature representations and show that unsupervised visual representations are surprisingly more robust to catastrophic forgetting, consistently achieve better performance, and generalize better to out-of-distribution tasks than SCL. Furthermore, we find that UCL achieves a smoother loss landscape through qualitative analysis of the learned representations and learns meaningful feature representations. Additionally, we propose Lifelong Unsupervised Mixup (Lump), a simple yet effective technique that interpolates between the current task and previous tasks' instances to alleviate catastrophic forgetting for unsupervised representations.

Most convergence guarantees for stochastic gradient descent with momentum (SGDm) rely on iid sampling. Yet, SGDm is often used outside this regime, in settings with temporally correlated input samples such as continual learning and reinforcement learning. Existing work has shown that SGDm with a decaying step-size can converge under Markovian temporal correlation. In this work, we show that SGDm under covariate shift with a fixed step-size can be unstable and diverge. In particular, we show SGDm under covariate shift is a parametric oscillator, and so can suffer from a phenomenon known as resonance. We approximate the learning system as a time varying system of ordinary differential equations, and leverage existing theory to characterize the system's divergence/convergence as resonant/nonresonant modes. The theoretical result is limited to the linear setting with periodic covariate shift, so we empirically supplement this result to show that resonance phenomena persist even under non-periodic covariate shift, nonlinear dynamics with neural networks, and optimizers other than SGDm.

Adversarial transferability enables attackers to generate adversarial examples from the source model to attack the target model, which has raised security concerns about the deployment of DNNs in practice. In this paper, we rethink adversarial transferability from a data distribution perspective and further enhance transferability by score matching based optimization. We identify that some samples with injecting small Gaussian noise can fool different target models, and their adversarial examples under different source models have much stronger transferability. We hypothesize that these samples are in the low-density region of the ground truth distribution where models are not well trained. To improve the attack success rate of adversarial examples, we match the adversarial attacks with the directions which effectively decrease the ground truth density. We propose Intrinsic Adversarial Attack (IAA), which smooths the activation function and decreases the impact of the later layers of a given normal model, to increase the alignment of adversarial attack and the gradient of joint data distribution. We conduct comprehensive transferable attacks against multiple DNNs and show that our IAA can boost the transferability of the crafted attacks in all cases and go beyond state-of-the-art methods.

This paper addresses the unsupervised learning of content-style decomposed representation. We first give a definition of style and then model the content-style representation as a token-level bipartite graph. An unsupervised framework, named Retriever, is proposed to learn such representations. First, a cross-attention module is employed to retrieve permutation invariant (P.I.) information, defined as style, from the input data. Second, a vector quantization (VQ) module is used, together with man-induced constraints, to produce interpretable content tokens. Last, an innovative link attention module serves as the decoder to reconstruct data from the decomposed content and style, with the help of the linking keys. Being modal-agnostic, the proposed Retriever is evaluated in both speech and image domains. The state-of-the-art zero-shot voice conversion performance confirms the disentangling ability of our framework. Top performance is also achieved in the part discovery task for images, verifying the interpretability of our representation. In addition, the vivid part-based style transfer quality demonstrates the potential of Retriever to support various fascinating generative tasks. Project page at https://ydcustc.github.io/retriever-demo/.

We study the problem of learning verifiably safe parameters for programs that use neural networks as well as symbolic, human-written code. Such neurosymbolic programs arise in many safety-critical domains. However, because they need not be differentiable, it is hard to learn their parameters using existing gradient-based approaches to safe learning. Our method, Differentiable Symbolic Execution (DSE), samples control flow paths in a program, symbolically constructs worst-case "safety loss" along these paths, and backpropagates the gradients of these losses through program operations using a generalization of the REINFORCE estimator. We evaluate the method on a mix of synthetic tasks and real-world benchmarks. Our experiments show that DSE significantly outperforms the state-of-the-art DiffAI method on these tasks.

Discovering relevant input features for predicting a target variable is a key scientific question. However, in many domains, such as medicine and biology, feature selection is confounded by a scarcity of labeled samples coupled with significant correlations among features. In this paper, we propose a novel deep learning approach to feature selection that addresses both challenges simultaneously. First, we pre-train the network using unlabeled samples within a self-supervised learning framework by solving pretext tasks that require the network to learn informative representations from partial feature sets. Then, we fine-tune the pre-trained network to discover relevant features using labeled samples. During both training phases, we explicitly account for the correlation structure of the input features by generating correlated gate vectors from a multivariate Bernoulli distribution. Experiments on multiple real-world datasets including clinical and omics demonstrate that our model discovers relevant features that provide superior prediction performance compared to the state-of-the-art benchmarks in practical scenarios where there is often limited labeled data and high correlations among features.

A plethora of machine learning methods have been applied to imaging data, enabling the construction of clinically relevant imaging signatures of neurological and neuropsychiatric diseases. Oftentimes, such methods don't explicitly model the heterogeneity of disease effects, or approach it via nonlinear models that are not interpretable. Moreover, unsupervised methods may parse heterogeneity that is driven by nuisance confounding factors that affect brain structure or function, rather than heterogeneity relevant to a pathology of interest. On the other hand, semi-supervised clustering methods seek to derive a dichotomous subtype membership, ignoring the truth that disease heterogeneity spatially and temporally extends along a continuum. To address the aforementioned limitations, herein, we propose a novel method, termed Surreal-GAN (Semi-SUpeRvised ReprEsentAtion Learning via GAN). Using cross-sectional imaging data, Surreal-GAN dissects underlying disease-related heterogeneity under the principle of semi-supervised clustering (cluster mappings from normal control to patient), proposes a continuously dimensional representation, and infers the disease severity of patients at individual level along each dimension. The model first learns a transformation function from normal control (CN) domain to the patient (PT) domain with latent variables controlling transformation directions. An inverse mapping function together with regularization on function continuity, pattern orthogonality and monotonicity was also imposed to …


Autoregressive sequence generation, a prevalent task in machine learning and natural language processing, generates every target token conditioned on both a source input and previously generated target tokens. Previous data augmentation methods, which have been shown to be effective for the task, mainly enhance source inputs (e.g., injecting noise into the source sequence by random swapping or masking, back translation, etc.) while overlooking the target-side augmentation. In this work, we propose a target-side augmentation method for sequence generation. In training, we use the decoder output probability distributions as soft indicators, which are multiplied with target token embeddings, to build pseudo tokens. These soft pseudo tokens are then used as target tokens to enhance the training. We conduct comprehensive experiments on various sequence generation tasks, including dialog generation, machine translation, and abstractive summarization. Without using any extra labeled data or introducing additional model parameters, our method significantly outperforms strong baselines. The code is available at https://github.com/TARGET-SIDE-DATA-AUG/TSDASG.

Explainable distances for sequence data depend on temporal alignment to tackle sequences with different lengths and local variances. Most sequence alignment methods infer the optimal alignment by solving an optimization problem under pre-defined feasible alignment constraints, which not only is time-consuming, but also makes end-to-end sequence learning intractable. In this paper, we propose a learnable sequence distance called Temporal Alignment Prediction (TAP). TAP employs a lightweight convolutional neural network to directly predict the optimal alignment between two sequences, so that only straightforward calculations are required and no optimization is involved in inference. TAP can be applied in different distance-based machine learning tasks. For supervised sequence representation learning, we show that TAP trained with various metric learning losses achieves completive performances with much faster inference speed. For few-shot action classification, we apply TAP as the distance measure in the metric learning-based episode-training paradigm. This simple strategy achieves comparable results with state-of-the-art few-shot action recognition methods.

Contrastive learning has recently taken off as a paradigm for learning from unlabeled data. In this paper, we discuss the close relationship between contrastive learning and meta-learning under a certain task distribution. We complement this observation by showing that established meta-learning methods, such as Prototypical Networks, achieve comparable performance to SimCLR when paired with this task distribution. This relationship can be leveraged by taking established techniques from meta-learning, such as task-based data augmentation, and showing that they benefit contrastive learning as well. These tricks also benefit state-of-the-art self-supervised learners without using negative pairs such as BYOL, which achieves 94.6\% accuracy on CIFAR-10 using a self-supervised ResNet-18 feature extractor trained with our meta-learning tricks. We conclude that existing advances designed for contrastive learning or meta-learning can be exploited to benefit the other, and it is better for contrastive learning researchers to take lessons from the meta-learning literature (and vice-versa) than to reinvent the wheel.

Large Language Models (LMs) are known to encode world knowledge in their parameters as they pretrain on a vast amount of web corpus, which is often utilized for performing knowledge-dependent downstream tasks such as question answering, fact-checking, and open dialogue. In real-world scenarios, the world knowledge stored in the LMs can quickly become outdated as the world changes, but it is non-trivial to avoid catastrophic forgetting and reliably acquire new knowledge while preserving invariant knowledge. To push the community towards better maintenance of ever-changing LMs, we formulate a new continual learning (CL) problem called Continual Knowledge Learning (CKL). We construct a new benchmark and metric to quantify the retention of time-invariant world knowledge, the update of outdated knowledge, and the acquisition of new knowledge. We adopt applicable recent methods from literature to create several strong baselines. Through extensive experiments, we find that CKL exhibits unique challenges that are not addressed in previous CL setups, where parameter expansion is necessary to reliably retain and learn knowledge simultaneously. By highlighting the critical causes of knowledge forgetting, we show that CKL is a challenging and important problem that helps us better understand and train ever-changing LMs.

There has been emerging interest in using transductive learning for adversarial robustness (Goldwasser et al., NeurIPS 2020; Wu et al., ICML 2020; Wang et al., ArXiv 2021). Compared to traditional defenses, these defense mechanisms "dynamically learn" the model based on test-time input; and theoretically, attacking these defenses reduces to solving a bilevel optimization problem, which poses difficulty in crafting adaptive attacks. In this paper, we examine these defense mechanisms from a principled threat analysis perspective. We formulate and analyze threat models for transductive-learning based defenses, and point out important subtleties. We propose the principle of attacking model space for solving bilevel attack objectives, and present Greedy Model Space Attack (GMSA), an attack framework that can serve as a new baseline for evaluating transductive-learning based defenses. Through systematic evaluation, we show that GMSA, even with weak instantiations, can break previous transductive-learning based defenses, which were resilient to previous attacks, such as AutoAttack (Croce and Hein, ICML 2020). On the positive side, we report a somewhat surprising empirical result of "transductive adversarial training": Adversarially retraining the model using fresh randomness at the test time gives a significant increase in robustness against attacks we consider.


Despite their success and popularity, deep neural networks (DNNs) are vulnerable when facing backdoor attacks. This impedes their wider adoption, especially in mission critical applications. This paper tackles the problem of Trojan detection, namely, identifying Trojaned models – models trained with poisoned data. One popular approach is reverse engineering, i.e., recovering the triggers on a clean image by manipulating the model’s prediction. One major challenge of reverse engineering approach is the enormous search space of triggers. To this end, we propose innovative priors such as diversity and topological simplicity to not only increase the chances of finding the appropriate triggers but also improve the quality of the found triggers. Moreover, by encouraging a diverse set of trigger candidates, our method can perform effectively in cases with unknown target labels. We demonstrate that these priors can significantly improve the quality of the recovered triggers, resulting in substantially improved Trojan detection accuracy as validated on both synthetic and publicly available TrojAI benchmarks.

Transformers are neural network architectures that achieve remarkable performance in many areas. However, the core component of Transformers, multi-head self-attention (MHSA), is mainly derived from heuristics, and the interactions across its components are not well understood. To address the problem, we first introduce a mathematically rigorous and yet intuitive tensor diagram representation of MHSA. Guided by tensor diagram representations, we propose a novel design, namely Tunable Transformers (Tuformers), by allowing data-driven weights across heads, whereas MHSA adopts pre-defined and fixed weights across heads, as will be explained in our paper. Tuformers naturally reveal a flexible design space that a user, depending on the needs, can choose a structure that has either improved performance (generalization error) or higher model efficiency. Any pre-trained Transformer can be an initialization of the corresponding Tuformer with trainable number of heads for efficient training and fine-tuning. Tuformers universally outperform Transformers on various tasks across multiple domains under a wide range of model sizes.

Self-attention (SA) is a critical component of Transformer neural networks that have succeeded in automatic speech recognition (ASR). In this paper, we analyze the role of SA in Transformer-based ASR models for not only understanding the mechanism of improved recognition accuracy but also lowering the computational complexity. We reveal that SA performs two distinct roles: phonetic and linguistic localization. Especially, we show by experiments that phonetic localization in the lower layers extracts phonologically meaningful features from speech and reduces the phonetic variance in the utterance for proper linguistic localization in the upper layers. From this understanding, we discover that attention maps can be reused as long as their localization capability is preserved. To evaluate this idea, we implement the layer-wise attention map reuse on real GPU platforms and achieve up to 1.96 times speedup in inference and 33% savings in training time with noticeably improved ASR performance for the challenging benchmark on LibriSpeech dev/test-other dataset.

It is a challenging task to learn rich and multi-scale spatiotemporal semantics from high-dimensional videos, due to large local redundancy and complex global dependency between video frames. The recent advances in this research have been mainly driven by 3D convolutional neural networks and vision transformers. Although 3D convolution can efficiently aggregate local context to suppress local redundancy from a small 3D neighborhood, it lacks the capability to capture global dependency because of the limited receptive field. Alternatively, vision transformers can effectively capture long-range dependency by self-attention mechanism, while having the limitation on reducing local redundancy with blind similarity comparison among all the tokens in each layer. Based on these observations, we propose a novel Unified transFormer (UniFormer) which seamlessly integrates merits of 3D convolution and spatiotemporal self-attention in a concise transformer format, and achieves a preferable balance between computation and accuracy. Different from traditional transformers, our relation aggregator can tackle both spatiotemporal redundancy and dependency, by learning local and global token affinity respectively in shallow and deep layers. We conduct extensive experiments on the popular video benchmarks, e.g., Kinetics-400, Kinetics-600, and Something-Something V1&V2. With only ImageNet-1K pretraining, our UniFormer achieves 82.9%/84.8% top-1 accuracy on Kinetics-400/Kinetics-600, while requiring 10x fewer GFLOPs …

We study the problem of inferring an object-centric scene representation from a single image, aiming to derive a representation that explains the image formation process, captures the scene's 3D nature, and is learned without supervision. Most existing methods on scene decomposition lack one or more of these characteristics, due to the fundamental challenge in integrating the complex 3D-to-2D image formation process into powerful inference schemes like deep networks. In this paper, we propose unsupervised discovery of Object Radiance Fields (uORF), integrating recent progresses in neural 3D scene representations and rendering with deep inference networks for unsupervised 3D scene decomposition. Trained on multi-view RGB images without annotations, uORF learns to decompose complex scenes with diverse, textured background from a single image. We show that uORF enables novel tasks, such as scene segmentation and editing in 3D, and it performs well on these tasks and on novel view synthesis on three datasets.

How to make intelligent decisions is a central problem in machine learning and artificial intelligence. Despite recent successes of deep reinforcement learning (RL) in various decision making problems, an important but under-explored aspect is how to leverage oracle observation (the information that is invisible during online decision making, but is available during offline training) to facilitate learning. For example, human experts will look at the replay after a Poker game, in which they can check the opponents' hands to improve their estimation of the opponents' hands from the visible information during playing. In this work, we study such problems based on Bayesian theory and derive an objective to leverage oracle observation in RL using variational methods. Our key contribution is to propose a general learning framework referred to as variational latent oracle guiding (VLOG) for DRL. VLOG is featured with preferable properties such as its robust and promising performance and its versatility to incorporate with any value-based DRL algorithm. We empirically demonstrate the effectiveness of VLOG in online and offline RL domains with tasks ranging from video games to a challenging tile-based game Mahjong. Furthermore, we publish the Mahjong environment and an offline RL dataset as a benchmark to facilitate …

Perceiving and manipulating 3D articulated objects (e.g., cabinets, doors) in human environments is an important yet challenging task for future home-assistant robots. The space of 3D articulated objects is exceptionally rich in their myriad semantic categories, diverse shape geometry, and complicated part functionality. Previous works mostly abstract kinematic structure with estimated joint parameters and part poses as the visual representations for manipulating 3D articulated objects. In this paper, we propose object-centric actionable visual priors as a novel perception-interaction handshaking point that the perception system outputs more actionable guidance than kinematic structure estimation, by predicting dense geometry-aware, interaction-aware, and task-aware visual action affordance and trajectory proposals. We design an interaction-for-perception framework VAT-Mart to learn such actionable visual representations by simultaneously training a curiosity-driven reinforcement learning policy exploring diverse interaction trajectories and a perception module summarizing and generalizing the explored knowledge for pointwise predictions among diverse shapes. Experiments prove the effectiveness of the proposed approach using the large-scale PartNet-Mobility dataset in SAPIEN environment and show promising generalization capabilities to novel test shapes, unseen object categories, and real-world data.

Transformers are transforming the landscape of computer vision, especially for recognition tasks. Detection transformers are the first fully end-to-end learning systems for object detection, while vision transformers are the first fully transformer-based architecture for image classification. In this paper, we integrate Vision and Detection Transformers (ViDT) to build an effective and efficient object detector. ViDT introduces a reconfigured attention module to extend the recent Swin Transformer to be a standalone object detector, followed by a computationally efficient transformer decoder that exploits multi-scale features and auxiliary techniques essential to boost the detection performance without much increase in computational load. Extensive evaluation results on the Microsoft COCO benchmark dataset demonstrate that ViDT obtains the best AP and latency trade-off among existing fully transformer-based object detectors, and achieves 49.2AP owing to its high scalability for large models. We release the code and trained models at https://github.com/naver-ai/vidt.

Recently, Vision Transformers (ViTs) have shown competitive performance on image recognition while requiring less vision-specific inductive biases. In this paper, we investigate if such performance can be extended to image generation. To this end, we integrate the ViT architecture into generative adversarial networks (GANs). For ViT discriminators, we observe that existing regularization methods for GANs interact poorly with self-attention, causing serious instability during training. To resolve this issue, we introduce several novel regularization techniques for training GANs with ViTs. For ViT generators, we examine architectural choices for latent and pixel mapping layers to faciliate convergence. Empirically, our approach, named ViTGAN, achieves comparable performance to the leading CNN- based GAN models on three datasets: CIFAR-10, CelebA, and LSUN bedroom.

In this paper, we introduce Target-Aware Weighted Training (TAWT), a weighted training algorithm for cross-task learning based on minimizing a representation-based task distance between the source and target tasks. We show that TAWT is easy to implement, is computationally efficient, requires little hyperparameter tuning, and enjoys non-asymptotic learning-theoretic guarantees. The effectiveness of TAWT is corroborated through extensive experiments with BERT on four sequence tagging tasks in natural language processing (NLP), including part-of-speech (PoS) tagging, chunking, predicate detection, and named entity recognition (NER). As a byproduct, the proposed representation-based task distance allows one to reason in a theoretically principled way about several critical aspects of cross-task learning, such as the choice of the source data and the impact of fine-tuning.
Federated learning data is drawn from a distribution of distributions: clients are drawn from a meta-distribution, and their data are drawn from local data distributions. Generalization studies in federated learning should separate performance gaps from unseen client data (out-of-sample gap) from performance gaps from unseen client distributions (participation gap). In this work, we propose a framework for disentangling these performance gaps. Using this framework, we observe and explain differences in behavior across natural and synthetic federated datasets, indicating that dataset synthesis strategy can be important for realistic simulations of generalization in federated learning. We propose a semantic synthesis strategy that enables realistic simulation without naturally partitioned data. Informed by our findings, we call out community suggestions for future federated learning works.

Affinity Event: Queer in AI Social @ ICLR 2022 Tue 26 Apr 03:00 a.m.
Queer in AI build community for queer AI scientists and practitioners, and conducts advocacy in issues at the intersection of queerness and AI. Join us at our social to hang out with cool queer people and learn about our organization! Please join by filling out our check-in survey to get the gather.town link: https://forms.gle/UdtmhoVCf8SB5sEVA
Social: Optimization in ML and DL - A discussion on theory and practice Tue 26 Apr 03:00 a.m.
Optimization algorithms play an important role in training neural networks and their convergence. In this social, we shall discuss the efficiency of second order optimization and its acceleration using Nesterov's gradient.
Oral 2: Understanding Deep Learning Tue 26 Apr 08:00 a.m.

Characterizing the separation power of graph neural networks (GNNs) provides an understanding of their limitations for graph learning tasks. Results regarding separation power are, however, usually geared at specific GNNs architectures, and tools for understanding arbitrary GNN architectures are generally lacking. We provide an elegant way to easily obtain bounds on the separation power of GNNs in terms of the Weisfeiler-Leman (WL) tests, which have become the yardstick to measure the separation power of GNNs. The crux is to view GNNs as expressions in a procedural tensor language describing the computations in the layers of the GNNs. Then, by a simple analysis of the obtained expressions, in terms of the number of indexes used and the nesting depth of summations, bounds on the separation power in terms of the WL-tests readily follow. We use tensor language to define Higher-Order Message-Passing Neural Networks (or k-MPNNs), a natural extension of MPNNs. Furthermore, the tensor language point of view allows for the derivation of universality results for classes of GNNs in a natural way. Our approach provides a toolbox with which GNN architecture designers can analyze the separation power of their GNNs, without needing to know the intricacies of the WL-tests. We also …

The recently discovered Neural Collapse (NC) phenomenon occurs pervasively in today's deep net training paradigm of driving cross-entropy (CE) loss towards zero. During NC, last-layer features collapse to their class-means, both classifiers and class-means collapse to the same Simplex Equiangular Tight Frame, and classifier behavior collapses to the nearest-class-mean decision rule. Recent works demonstrated that deep nets trained with mean squared error (MSE) loss perform comparably to those trained with CE. As a preliminary, we empirically establish that NC emerges in such MSE-trained deep nets as well through experiments on three canonical networks and five benchmark datasets. We provide, in a Google Colab notebook, PyTorch code for reproducing MSE-NC and CE-NC: https://colab.research.google.com/github/neuralcollapse/neuralcollapse/blob/main/neuralcollapse.ipynb. The analytically-tractable MSE loss offers more mathematical opportunities than the hard-to-analyze CE loss, inspiring us to leverage MSE loss towards the theoretical investigation of NC. We develop three main contributions: (I) We show a new decomposition of the MSE loss into (A) terms directly interpretable through the lens of NC and which assume the last-layer classifier is exactly the least-squares classifier; and (B) a term capturing the deviation from this least-squares classifier. (II) We exhibit experiments on canonical datasets and networks demonstrating that term-(B) is negligible during training. …

Convolutional neural networks typically contain several downsampling operators, such as strided convolutions or pooling layers, that progressively reduce the resolution of intermediate representations. This provides some shift-invariance while reducing the computational complexity of the whole architecture. A critical hyperparameter of such layers is their stride: the integer factor of downsampling. As strides are not differentiable, finding the best configuration either requires cross-validation or discrete optimization (e.g. architecture search), which rapidly become prohibitive as the search space grows exponentially with the number of downsampling layers. Hence, exploring this search space by gradient descent would allow finding better configurations at a lower computational cost. This work introduces DiffStride, the first downsampling layer with learnable strides. Our layer learns the size of a cropping mask in the Fourier domain, that effectively performs resizing in a differentiable way. Experiments on audio and image classification show the generality and effectiveness of our solution: we use DiffStride as a drop-in replacement to standard downsampling layers and outperform them. In particular, we show that introducing our layer into a ResNet-18 architecture allows keeping consistent high performance on CIFAR10, CIFAR100 and ImageNet even when training starts from poor random stride configurations. Moreover, formulating strides as learnable variables allows …
We prove that finding all globally optimal two-layer ReLU neural networks can be performed by solving a convex optimization program with cone constraints. Our analysis is novel, characterizes all optimal solutions, and does not leverage duality-based analysis which was recently used to lift neural network training into convex spaces. Given the set of solutions of our convex optimization program, we show how to construct exactly the entire set of optimal neural networks. We provide a detailed characterization of this optimal set and its invariant transformations. As additional consequences of our convex perspective, (i) we establish that Clarke stationary points found by stochastic gradient descent correspond to the global optimum of a subsampled convex problem (ii) we provide a polynomial-time algorithm for checking if a neural network is a global minimum of the training loss (iii) we provide an explicit construction of a continuous path between any neural network and the global minimum of its sublevel set and (iv) characterize the minimal size of the hidden layer so that the neural network optimization landscape has no spurious valleys.Overall, we provide a rich framework for studying the landscape of neural network training loss through convexity.

In distributed learning, local SGD (also known as federated averaging) and its simple baseline minibatch SGD are widely studied optimization methods. Most existing analyses of these methods assume independent and unbiased gradient estimates obtained via with-replacement sampling. In contrast, we study shuffling-based variants: minibatch and local Random Reshuffling, which draw stochastic gradients without replacement and are thus closer to practice. For smooth functions satisfying the Polyak-Łojasiewicz condition, we obtain convergence bounds (in the large epoch regime) which show that these shuffling-based variants converge faster than their with-replacement counterparts. Moreover, we prove matching lower bounds showing that our convergence analysis is tight. Finally, we propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.

This paper explores the bottleneck of feature representations of deep neural networks (DNNs), from the perspective of the complexity of interactions between input variables encoded in DNNs. To this end, we focus on the multi-order interaction between input variables, where the order represents the complexity of interactions. We discover that a DNN is more likely to encode both too simple and too complex interactions, but usually fails to learn interactions of intermediate complexity. Such a phenomenon is widely shared by different DNNs for different tasks. This phenomenon indicates a cognition gap between DNNs and humans, and we call it a representation bottleneck. We theoretically prove the underlying reason for the representation bottleneck. Furthermore, we propose losses to encourage/penalize the learning of interactions of specific complexities, and analyze the representation capacities of interactions of different complexities. The code is available at https://github.com/Nebularaid2000/bottleneck.

Continual learning (CL) aims to learn a sequence of tasks without forgetting the previously acquired knowledge. However, recent CL advances are restricted to supervised continual learning (SCL) scenarios. Consequently, they are not scalable to real-world applications where the data distribution is often biased and unannotated. In this work, we focus on unsupervised continual learning (UCL), where we learn the feature representations on an unlabelled sequence of tasks and show that reliance on annotated data is not necessary for continual learning. We conduct a systematic study analyzing the learned feature representations and show that unsupervised visual representations are surprisingly more robust to catastrophic forgetting, consistently achieve better performance, and generalize better to out-of-distribution tasks than SCL. Furthermore, we find that UCL achieves a smoother loss landscape through qualitative analysis of the learned representations and learns meaningful feature representations. Additionally, we propose Lifelong Unsupervised Mixup (Lump), a simple yet effective technique that interpolates between the current task and previous tasks' instances to alleviate catastrophic forgetting for unsupervised representations.
Oral 2: AI applications Tue 26 Apr 08:00 a.m.

Learning causal relationships in high-dimensional data (images, videos) is a hard task, as they are often defined on low dimensional manifolds and must be extracted from complex signals dominated by appearance, lighting, textures and also spurious correlations in the data. We present a method for learning counterfactual reasoning of physical processes in pixel space, which requires the prediction of the impact of interventions on initial conditions. Going beyond the identification of structural relationships, we deal with the challenging problem of forecasting raw video over long horizons. Our method does not require the knowledge or supervision of any ground truth positions or other object or scene properties. Our model learns and acts on a suitable hybrid latent representation based on a combination of dense features, sets of 2D keypoints and an additional latent vector per keypoint. We show that this better captures the dynamics of physical processes than purely dense or sparse representations. We introduce a new challenging and carefully designed counterfactual benchmark for predictions in pixel space and outperform strong baselines in physics-inspired ML and video prediction.

As Artificial Intelligence as a Service gains popularity, protecting well-trained models as intellectual property is becoming increasingly important. There are two common types of protection methods: ownership verification and usage authorization. In this paper, we propose Non-Transferable Learning (NTL), a novel approach that captures the exclusive data representation in the learned model and restricts the model generalization ability to certain domains. This approach provides effective solutions to both model verification and authorization. Specifically: 1) For ownership verification, watermarking techniques are commonly used but are often vulnerable to sophisticated watermark removal methods. By comparison, our NTL-based ownership verification provides robust resistance to state-of-the-art watermark removal methods, as shown in extensive experiments with 6 removal approaches over the digits, CIFAR10 & STL10, and VisDA datasets. 2) For usage authorization, prior solutions focus on authorizing specific users to access the model, but authorized users can still apply the model to any data without restriction. Our NTL-based authorization approach instead provides data-centric protection, which we call applicability authorization, by significantly degrading the performance of the model on unauthorized data. Its effectiveness is also shown through experiments on aforementioned datasets.


Understanding how neural dynamics give rise to behaviour is one of the most fundamental questions in systems neuroscience. To achieve this, a common approach is to record neural populations in behaving animals, and model these data as emanating from a latent dynamical system whose state trajectories can then be related back to behavioural observations via some form of decoding. As recordings are typically performed in localized circuits that form only a part of the wider implicated network, it is important to simultaneously learn the local dynamics and infer any unobserved external input that might drive them. Here, we introduce iLQR-VAE, a novel control-based approach to variational inference in nonlinear dynamical systems, capable of learning both latent dynamics, initial conditions, and ongoing external inputs. As in recent deep learning approaches, our method is based on an input-driven sequential variational autoencoder (VAE). The main novelty lies in the use of the powerful iterative linear quadratic regulator algorithm (iLQR) in the recognition model. Optimization of the standard evidence lower-bound requires differentiating through iLQR solutions, which is made possible by recent advances in differentiable control. Importantly, having the recognition model be implicitly defined by the generative model greatly reduces the number of free parameters …

Tensor computations underlie modern scientific computing and deep learning.A number of tensor frameworks emerged varying in execution model, hardware support, memory management, model definition, etc.However, tensor operations in all frameworks follow the same paradigm.Recent neural network architectures demonstrate demand for higher expressiveness of tensor operations.The current paradigm is not suited to write readable, reliable, or easy-to-modify code for multidimensional tensor manipulations. Moreover, some commonly used operations do not provide sufficient checks and can break a tensor structure.These mistakes are elusive as no tools or tests can detect them.Independently, API discrepancies complicate code transfer between frameworks.We propose einops notation: a uniform and generic way to manipulate tensor structure, that significantly improves code readability and flexibility by focusing on the structure of input and output tensors.We implement einops notation in a Python package that efficiently supports multiple widely used frameworks and provides framework-independent minimalist API for tensor manipulations.

In this paper, we perform an in-depth study of the properties and applications of aligned generative models.We refer to two models as aligned if they share the same architecture, and one of them (the child) is obtained from the other (the parent) via fine-tuning to another domain, a common practice in transfer learning. Several works already utilize some basic properties of aligned StyleGAN models to perform image-to-image translation. Here, we perform the first detailed exploration of model alignment, also focusing on StyleGAN. First, we empirically analyze aligned models and provide answers to important questions regarding their nature. In particular, we find that the child model's latent spaces are semantically aligned with those of the parent, inheriting incredibly rich semantics, even for distant data domains such as human faces and churches. Second, equipped with this better understanding, we leverage aligned models to solve a diverse set of tasks. In addition to image translation, we demonstrate fully automatic cross-domain image morphing. We further show that zero-shot vision tasks may be performed in the child domain, while relying exclusively on supervision in the parent domain. We demonstrate qualitatively and quantitatively that our approach yields state-of-the-art results, while requiring only simple fine-tuning and inversion.
Oral 2: Structured learning Tue 26 Apr 08:00 a.m.


This paper studies node classification in the inductive setting, i.e., aiming to learn a model on labeled training graphs and generalize it to infer node labels on unlabeled test graphs. This problem has been extensively studied with graph neural networks (GNNs) by learning effective node representations, as well as traditional structured prediction methods for modeling the structured output of node labels, e.g., conditional random fields (CRFs). In this paper, we present a new approach called the Structured Proxy Network (SPN), which combines the advantages of both worlds. SPN defines flexible potential functions of CRFs with GNNs. However, learning such a model is nontrivial as it involves optimizing a maximin game with high-cost inference. Inspired by the underlying connection between joint and marginal distributions defined by Markov networks, we propose to solve an approximate version of the optimization problem as a proxy, which yields a near-optimal solution, making learning more efficient. Extensive experiments on two settings show that our approach outperforms many competitive baselines.

We propose a new perspective on designing powerful Graph Neural Networks (GNNs). In a nutshell, this enables a general solution to inject structural properties of graphs into a message-passing aggregation scheme of GNNs. As a theoretical basis, we develop a new hierarchy of local isomorphism on neighborhood subgraphs. Then, we theoretically characterize how message-passing GNNs can be designed to be more expressive than the Weisfeiler Lehman test. To elaborate this characterization, we propose a novel neural model, called GraphSNN, and prove that this model is strictly more expressive than the Weisfeiler Lehman test in distinguishing graph structures. We empirically verify the strength of our model on different graph learning tasks. It is shown that our model consistently improves the state-of-the-art methods on the benchmark tasks without sacrificing computational simplicity and efficiency.


We are concerned with the problem of distributional prediction with incomplete features: The goal is to estimate the distribution of target variables given feature vectors with some of the elements missing. A typical approach to this problem is to perform missing-value imputation and regression, simultaneously or sequentially, which we call the generative approach. Another approach is to perform regression after appropriately encoding missing values into the feature, which we call the discriminative approach. In comparison, the generative approach is more robust to the feature corruption while the discriminative approach is more favorable to maximize the performance of prediction. In this study, we propose a hybrid method to take the best of both worlds. Our method utilizes the black-box variational inference framework so that it can be applied to a wide variety of modern machine learning models, including the variational autoencoders. We also confirmed the effectiveness of the proposed method empirically.
Poster Session 4 Tue 26 Apr 09:30 a.m.
[ Virtual ]

[ Virtual ]

The Koopman operator theory linearly describes nonlinear dynamical systems in a high-dimensional functional space and it allows to apply linear control methods to highly nonlinear systems. However, the Koopman operator does not account for any uncertainty in dynamical systems, causing it to perform poorly in real-world applications.Therefore, we propose a deep stochastic Koopman operator (DeSKO) model in a robust learning control framework to guarantee stability of nonlinear stochastic systems. The DeSKO model captures a dynamical system's uncertainty by inferring a distribution of observables. We use the inferred distribution to design a robust, stabilizing closed-loop controller for a dynamical system. Modeling and control experiments on several advanced control benchmarks show that our framework is more robust and scalable than state-of-the-art deep Koopman operators and reinforcement learning methods. Tested control benchmarks include a soft robotic arm, a legged robot, and a biological gene regulatory network. We also demonstrate that this robust control method resists previously unseen uncertainties, such as external disturbances, with a magnitude of up to five times the maximum control input. Our approach opens up new possibilities in learning control for high-dimensional nonlinear systems while robustly managing internal or external uncertainty.
[ Virtual ]

Self-supervised learning (SSL) is capable of learning remarkable representations from centrally available data. Recent works further implement federated learning with SSL to learn from rapidly growing decentralized unlabeled images (e.g., from cameras and phones), often resulted from privacy constraints. Extensive attention has been paid to SSL approaches based on Siamese networks. However, such an effort has not yet revealed deep insights into various fundamental building blocks for the federated self-supervised learning (FedSSL) architecture. We aim to fill in this gap via in-depth empirical study and propose a new method to tackle the non-independently and identically distributed (non-IID) data problem of decentralized data. Firstly, we introduce a generalized FedSSL framework that embraces existing SSL methods based on Siamese networks and presents flexibility catering to future methods. In this framework, a server coordinates multiple clients to conduct SSL training and periodically updates local models of clients with the aggregated global model. Using the framework, our study uncovers unique insights of FedSSL: 1) stop-gradient operation, previously reported to be essential, is not always necessary in FedSSL; 2) retaining local knowledge of clients in FedSSL is particularly beneficial for non-IID data. Inspired by the insights, we then propose a new approach for model update, …
[ Virtual ]

Graph Neural Networks (GNNs) are often used to learn transformations of graph data. While effective in practice, such approaches make predictions via numeric manipulations so their output cannot be easily explained symbolically. We propose a new family of GNN-based transformations of graph data that can be trained effectively, but where all predictions can be explained symbolically as logical inferences in Datalog—a well-known rule-based formalism. In particular, we show how to encode an input knowledge graph into a graph with numeric feature vectors, process this graph using a GNN, and decode the result into an output knowledge graph. We use a new class of monotonic GNNs (MGNNs) to ensure that this process is equivalent to a round of application of a set of Datalog rules. We also show that, given an arbitrary MGNN, we can automatically extract rules that completely characterise the transformation. We evaluate our approach by applying it to classification tasks in knowledge graph completion.
[ Virtual ]

[ Virtual ]

Self-supervised learning provides a promising path towards eliminating the need for costly label information in representation learning on graphs. However, to achieve state-of-the-art performance, methods often need large numbers of negative examples and rely on complex augmentations. This can be prohibitively expensive, especially for large graphs. To address these challenges, we introduce Bootstrapped Graph Latents (BGRL) - a graph representation learning method that learns by predicting alternative augmentations of the input. BGRL uses only simple augmentations and alleviates the need for contrasting with negative examples, and thus is scalable by design. BGRL outperforms or matches prior methods on several established benchmarks, while achieving a 2-10x reduction in memory costs. Furthermore, we show that BGRL can be scaled up to extremely large graphs with hundreds of millions of nodes in the semi-supervised regime, achieving state-of-the-art performance and improving over supervised baselines where representations are shaped only through label information. In particular, our solution centered on BGRL constituted one of the winning entries to the Open Graph Benchmark -Large Scale Challenge at KDD Cup 2021, on a graph orders of magnitudes larger than all previously available benchmarks, thus demonstrating the scalability and effectiveness of our approach.
[ Virtual ]

This paper tackles the AutoML problem, aimed to automatically select an ML algorithm and its hyper-parameter configuration most appropriate to the dataset at hand. The proposed approach, MetaBu, learns new meta-features via an Optimal Transport procedure, aligning the manually designed \mf s with the space of distributions on the hyper-parameter configurations. MetaBu meta-features, learned once and for all, induce a topology on the set of datasets that is exploited to define a distribution of promising hyper-parameter configurations amenable to AutoML. Experiments on the OpenML CC-18 benchmark demonstrate that using MetaBu meta-features boosts the performance of state of the art AutoML systems, AutoSklearn (Feurer et al. 2015) and Probabilistic Matrix Factorization (Fusi et al. 2018). Furthermore, the inspection of MetaBu meta-features gives some hints into when an ML algorithm does well. Finally, the topology based on MetaBu meta-features enables to estimate the intrinsic dimensionality of the OpenML benchmark w.r.t. a given ML algorithm or pipeline.
[ Virtual ]

Modern deep learning based classifiers show very high accuracy on test data but this does not provide sufficient guarantees for safe deployment, especially in high-stake AI applications such as medical diagnosis. Usually, predictions are obtained without a reliable uncertainty estimate or a formal guarantee. Conformal prediction (CP) addresses these issues by using the classifier's predictions, e.g., its probability estimates, to predict confidence sets containing the true class with a user-specified probability. However, using CP as a separate processing step after training prevents the underlying model from adapting to the prediction of confidence sets. Thus, this paper explores strategies to differentiate through CP during training with the goal of training model with the conformal wrapper end-to-end. In our approach, conformal training (ConfTr), we specifically simulate'' conformalization on mini-batches during training. Compared to standard training, ConfTr reduces the average confidence set size (inefficiency) of state-of-the-art CP methods applied after training. Moreover, it allows to
shape'' the confidence sets predicted at test time, which is difficult for standard CP. On experiments with several datasets, we show ConfTr can influence how inefficiency is distributed across classes, or guide the composition of confidence sets in terms of the included classes, while retaining the guarantees offered …
[ Virtual ]

How can we measure the reasoning capabilities of intelligence systems? Visual question answering provides a convenient framework for testing the model's abilities by interrogating the model through questions about the scene. However, despite scores of various visual QA datasets and architectures, which sometimes yield even a super-human performance, the question of whether those architectures can actually reason remains open to debate.To answer this, we extend the visual question answering framework and propose the following behavioral test in the form of a two-player game. We consider black-box neural models of CLEVR. These models are trained on a diagnostic dataset benchmarking reasoning. Next, we train an adversarial player that re-configures the scene to fool the CLEVR model. We show that CLEVR models, which otherwise could perform at a ``human-level'', can easily be fooled by our agent. Our results put in doubt whether data-driven approaches can do reasoning without exploiting the numerous biases that are often present in those datasets. Finally, we also propose a controlled experiment measuring the efficiency of such models to learn and perform reasoning.
[ Virtual ]

Learning in strategy games (e.g. StarCraft, poker) requires the discovery of diverse policies. This is often achieved by iteratively training new policies against existing ones, growing a policy population that is robust to exploit. This iterative approach suffers from two issues in real-world games: a) under finite budget, approximate best-response operators at each iteration needs truncating, resulting in under-trained good-responses populating the population; b) repeated learning of basic skills at each iteration is wasteful and becomes intractable in the presence of increasingly strong opponents. In this work, we propose Neural Population Learning (NeuPL) as a solution to both issues. NeuPL offers convergence guarantees to a population of best-responses under mild assumptions. By representing a population of policies within a single conditional model, NeuPL enables transfer learning across policies. Empirically, we show the generality, improved performance and efficiency of NeuPL across several test domains. Most interestingly, we show that novel strategies become more accessible, not less, as the neural population expands.
[ Virtual ]

Learning to infer the conditional posterior model is a key step for robust meta-learning. This paper presents a new Bayesian meta-learning approach called Neural Variational Dropout Processes (NVDPs). NVDPs model the conditional posterior distribution based on a task-specific dropout; a low-rank product of Bernoulli experts meta-model is utilized for a memory-efficient mapping of dropout rates from a few observed contexts. It allows for a quick reconfiguration of a globally learned and shared neural network for new tasks in multi-task few-shot learning. In addition, NVDPs utilize a novel prior conditioned on the whole task data to optimize the conditional dropout posterior in the amortized variational inference. Surprisingly, this enables the robust approximation of task-specific dropout rates that can deal with a wide range of functional ambiguities and uncertainties. We compared the proposed method with other meta-learning approaches in the few-shot learning tasks such as 1D stochastic regression, image inpainting, and classification. The results show the excellent performance of NVDPs.
[ Virtual ]

Vision Transformer (ViT) attains state-of-the-art performance in visual recognition, and the variant, Local Vision Transformer, makes further improvements. The major component in Local Vision Transformer, local attention, performs the attention separately over small local windows. We rephrase local attention as a channel-wise locally-connected layer and analyze it from two network regularization manners, sparse connectivity and weight sharing, as well as dynamic weight computation. We point out that local attention resembles depth-wise convolution and its dynamic variants in sparse connectivity: there is no connection across channels, and each position is connected to the positions within a small local window. The main differences lie in (i) weight sharing - depth-wise convolution shares connection weights (kernel weights) across spatial positions and attention shares the connection weights across channels, and (ii) dynamic weight computation manners - local attention is based on dot-products between pairwise positions in the local window, and dynamic convolution is based on linear projections conducted on the center representation or the globally pooled representation. The connection between local attention and dynamic depth-wise convolution is empirically verified by the ablation study about weight sharing and dynamic weight computation in Local Vision Transformer and (dynamic) depth-wise convolution. We empirically observe that the models …
[ Virtual ]

Partial label learning (PLL) is an important problem that allows each training example to be labeled with a coarse candidate set, which well suits many real-world data annotation scenarios with label ambiguity. Despite the promise, the performance of PLL often lags behind the supervised counterpart. In this work, we bridge the gap by addressing two key research challenges in PLL---representation learning and label disambiguation---in one coherent framework. Specifically, our proposed framework PiCO consists of a contrastive learning module along with a novel class prototype-based label disambiguation algorithm. PiCO produces closely aligned representations for examples from the same classes and facilitates label disambiguation. Theoretically, we show that these two components are mutually beneficial, and can be rigorously justified from an expectation-maximization (EM) algorithm perspective. Extensive experiments demonstrate that PiCO significantly outperforms the current state-of-the-art approaches in PLL and even achieves comparable results to fully supervised learning. Code and data available: https://github.com/hbzju/PiCO.
[ Virtual ]

Due to numerous breakthroughs in real-world applications brought by machine intelligence, deep neural networks (DNNs) are widely employed in critical applications. However, predictions of DNNs are easily manipulated with imperceptible adversarial perturbations, which impedes the further deployment of DNNs and may result in profound security and privacy implications. By incorporating adversarial samples into the training data pool, adversarial training is the strongest principled strategy against various adversarial attacks among all sorts of defense methods. Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space. But none of them taps the potentials of classifiers obtained from standard adversarial training, especially states on the searching trajectory of training. In this work, we are dedicated to the weight states of models through the training process and devise a simple but powerful \emph{Self-Ensemble Adversarial Training} (SEAT) method for yielding a robust classifier by averaging weights of history models. This considerably improves the robustness of the target model against several well known adversarial attacks, even merely utilizing the naive cross-entropy loss to supervise. We also discuss the relationship between the ensemble of predictions from different adversarially trained models and the prediction of weight-ensembled …
[ Virtual ]

Audio-visual navigation task requires an agent to find a sound source in a realistic, unmapped 3D environment by utilizing egocentric audio-visual observations. Existing audio-visual navigation works assume a clean environment that solely contains the target sound, which, however, would not be suitable in most real-world applications due to the unexpected sound noise or intentional interference. In this work, we design an acoustically complex environment in which, besides the target sound, there exists a sound attacker playing a zero-sum game with the agent. More specifically, the attacker can move and change the volume and category of the sound to make the agent suffer from finding the sounding object while the agent tries to dodge the attack and navigate to the goal under the intervention. Under certain constraints to the attacker, we can improve the robustness of the agent towards unexpected sound attacks in audio-visual navigation. For better convergence, we develop a joint training mechanism by employing the property of a centralized critic with decentralized actors. Experiments on two real-world 3D scan datasets, Replica, and Matterport3D, verify the effectiveness and the robustness of the agent trained under our designed environment when transferred to the clean environment or the one containing sound attackers …
[ Virtual ]

Trust region methods rigorously enabled reinforcement learning (RL) agents to learn monotonically improving policies, leading to superior performance on a variety of tasks. Unfortunately, when it comes to multi-agent reinforcement learning (MARL), the property of monotonic improvement may not simply apply; this is because agents, even in cooperative games, could have conflicting directions of policy updates. As a result, achieving a guaranteed improvement on the joint policy where each agent acts individually remains an open challenge. In this paper, we extend the theory of trust region learning to MARL. Central to our findings are the multi-agent advantage decomposition lemma and the sequential policy update scheme. Based on these, we develop Heterogeneous-Agent Trust Region Policy Optimisation (HATPRO) and Heterogeneous-Agent Proximal Policy Optimisation (HAPPO) algorithms. Unlike many existing MARL algorithms, HATRPO/HAPPO do not need agents to share parameters, nor do they need any restrictive assumptions on decomposibility of the joint value function. Most importantly, we justify in theory the monotonic improvement property of HATRPO/HAPPO. We evaluate the proposed methods on a series of Multi-Agent MuJoCo and StarCraftII tasks. Results show that HATRPO and HAPPO significantly outperform strong baselines such as IPPO, MAPPO and MADDPG on all tested tasks, thereby establishing a new …
[ Virtual ]

Boundaries or contours are among the primary visual cues used by human and computer vision systems. One of the key problems in boundary detection is the loss formulation, which typically leads to class imbalance and, as a consequence, to thick boundaries which require non-differential post-processing steps to be thinned.In this paper, we re-interpret boundaries as 1-D surfaces and formulate a one-to-one vector transform function that allows for training of boundary prediction completely avoiding the class imbalance issue. Specifically, we define the boundary representation at any point as the unit vector pointing to the closest boundary surface.Our problem formulation leads to the estimation of direction as well as richer contextual information of the boundary, and, if desired, the availability of zero-pixel thin boundaries also at training time. Our method uses no hyper-parameter in the training loss and a fixed stable hyper-parameter at inference. We provide theoretical justification/discussions of the vector transform representation. We evaluate the proposed loss method using a standard architecture and show the excellent performance over other losses and representations on several datasets.

3D point clouds are an important data format that captures 3D information for real world objects. Since 3D point clouds scanned in the real world are often incomplete, it is important to recover the complete point cloud for many downstreaming applications. Most existing point cloud completion methods use the Chamfer Distance (CD) loss for training. The CD loss estimates correspondences between two point clouds by searching nearest neighbors, which does not capture the overall point distribution on the generated shape, and therefore likely leads to non-uniform point cloud generation. To tackle this problem, we propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion. PDR consists of a Conditional Generation Network (CGNet) and a ReFinement Network (RFNet). The CGNet uses a conditional generative model called the denoising diffusion probabilistic model (DDPM) to generate a coarse completion conditioned on the partial observation. DDPM establishes a one-to-one pointwise mapping between the generated point cloud and the uniform ground truth, and then optimizes the mean squared error loss to realize uniform generation. The RFNet refines the coarse output of the CGNet and further improves quality of the completed point cloud. In terms of the architecture, we develop a novel dual-path architecture for …

Both animals and artificial agents benefit from state representations that support rapid transfer of learning across tasks and which enable them to efficiently traverse their environments to reach rewarding states. The successor representation (SR), which measures the expected cumulative, discounted state occupancy under a fixed policy, enables efficient transfer to different reward structures in an otherwise constant Markovian environment and has been hypothesized to underlie aspects of biological behavior and neural activity. However, in the real world, rewards may only be available for consumption once, may shift location, or agents may simply aim to reach goal states as rapidly as possible without the constraint of artificially imposed task horizons. In such cases, the most behaviorally-relevant representation would carry information about when the agent was likely to first reach states of interest, rather than how often it should expect to visit them over a potentially infinite time span. To reflect such demands, we introduce the first-occupancy representation (FR), which measures the expected temporal discount to the first time a state is accessed. We demonstrate that the FR facilitates exploration, the selection of efficient paths to desired states, allows the agent, under certain conditions, to plan provably optimal trajectories defined by a …

We study a class of algorithms for solving bilevel optimization problems in both stochastic and deterministic settings when the inner-level objective is strongly convex. Specifically, we consider algorithms based on inexact implicit differentiation and we exploit a warm-start strategy to amortize the estimation of the exact gradient. We then introduce a unified theoretical framework inspired by the study of singularly perturbed systems to analyze such amortized algorithms. By using this framework, our analysis shows these algorithms to match the computational complexity of oracle methods that have access to an unbiased estimate of the gradient, thus outperforming many existing results for bilevel optimization.We illustrate these findings on synthetic experiments and demonstrate the efficiency of these algorithms on hyper-parameter optimization experiments involving several thousands of variables.

In practical situations, the tree ensemble is one of the most popular models along with neural networks. A soft tree is a variant of a decision tree. Instead of using a greedy method for searching splitting rules, the soft tree is trained using a gradient method in which the entire splitting operation is formulated in a differentiable form. Although ensembles of such soft trees have been used increasingly in recent years, little theoretical work has been done to understand their behavior. By considering an ensemble of infinite soft trees, this paper introduces and studies the Tree Neural Tangent Kernel (TNTK), which provides new insights into the behavior of the infinite ensemble of soft trees. Using the TNTK, we theoretically identify several non-trivial properties, such as global convergence of the training, the equivalence of the oblivious tree structure, and the degeneracy of the TNTK induced by the deepening of the trees.

We propose a new perspective on designing powerful Graph Neural Networks (GNNs). In a nutshell, this enables a general solution to inject structural properties of graphs into a message-passing aggregation scheme of GNNs. As a theoretical basis, we develop a new hierarchy of local isomorphism on neighborhood subgraphs. Then, we theoretically characterize how message-passing GNNs can be designed to be more expressive than the Weisfeiler Lehman test. To elaborate this characterization, we propose a novel neural model, called GraphSNN, and prove that this model is strictly more expressive than the Weisfeiler Lehman test in distinguishing graph structures. We empirically verify the strength of our model on different graph learning tasks. It is shown that our model consistently improves the state-of-the-art methods on the benchmark tasks without sacrificing computational simplicity and efficiency.


While theoretically appealing, the application of the Wasserstein distance to large-scale machine learning problems has been hampered by its prohibitive computational cost. The sliced Wasserstein distance and its variants improve the computational efficiency through the random projection, yet they suffer from low accuracy if the number of projections is not sufficiently large, because the majority of projections result in trivially small values. In this work, we propose a new family of distance metrics, called augmented sliced Wasserstein distances (ASWDs), constructed by first mapping samples to higher-dimensional hypersurfaces parameterized by neural networks. It is derived from a key observation that (random) linear projections of samples residing on these hypersurfaces would translate to much more flexible nonlinear projections in the original sample space, so they can capture complex structures of the data distribution. We show that the hypersurfaces can be optimized by gradient ascent efficiently. We provide the condition under which the ASWD is a valid metric and show that this can be obtained by an injective neural network architecture. Numerical results demonstrate that the ASWD significantly outperforms other Wasserstein variants for both synthetic and real-world problems.

We propose a method for autonomously learning an object-centric representation of a continuous and high-dimensional environment that is suitable for planning. Such representations can immediately be transferred between tasks that share the same types of objects, resulting in agents that require fewer samples to learn a model of a new task. We first demonstrate our approach on a 2D crafting domain consisting of numerous objects where the agent learns a compact, lifted representation that generalises across objects. We then apply it to a series of Minecraft tasks to learn object-centric representations and object types - directly from pixel data - that can be leveraged to solve new tasks quickly. The resulting learned representations enable the use of a task-level planner, resulting in an agent capable of transferring learned representations to form complex, long-term plans.

Diffusion probabilistic models (DPMs) and their extensions have emerged as competitive generative models yet confront challenges of efficient sampling. We propose a new bilateral denoising diffusion model (BDDM) that parameterizes both the forward and reverse processes with a schedule network and a score network, which can train with a novel bilateral modeling objective. We show that the new surrogate objective can achieve a lower bound of the log marginal likelihood tighter than a conventional surrogate. We also find that BDDM allows inheriting pre-trained score network parameters from any DPMs and consequently enables speedy and stable learning of the schedule network and optimization of a noise schedule for sampling. Our experiments demonstrate that BDDMs can generate high-fidelity audio samples with as few as three sampling steps. Moreover, compared to other state-of-the-art diffusion-based neural vocoders, BDDMs produce comparable or higher quality samples indistinguishable from human speech, notably with only seven sampling steps (143x faster than WaveGrad and 28.6x faster than DiffWave).

Modeling dynamical systems combining prior physical knowledge and machine learning (ML) is promising in scientific problems when the underlying processes are not fully understood, e.g. when the dynamics is partially known. A common practice to identify the respective parameters of the physical and ML components is to formulate the problem as supervised learning on observed trajectories. However, this formulation leads to an infinite number of possible decompositions. To solve this ill-posedness, we reformulate the learning problem by introducing an upper bound on the prediction error of a physical-statistical model. This allows us to control the contribution of both the physical and statistical components to the overall prediction. This framework generalizes several existing hybrid schemes proposed in the literature. We provide theoretical guarantees on the well-posedness of our formulation along with a proof of convergence in a simple affine setting. For more complex dynamics, we validate our framework experimentally.

Unsupervised fine-grained class clustering is a practical yet challenging task due to the difficulty of feature representations learning of subtle object details. We introduce C3-GAN, a method that leverages the categorical inference power of InfoGAN with contrastive learning. We aim to learn feature representations that encourage a dataset to form distinct cluster boundaries in the embedding space, while also maximizing the mutual information between the latent code and its image observation. Our approach is to train a discriminator, which is also used for inferring clusters, to optimize the contrastive loss, where image-latent pairs that maximize the mutual information are considered as positive pairs and the rest as negative pairs. Specifically, we map the input of a generator, which was sampled from the categorical distribution, to the embedding space of the discriminator and let them act as a cluster centroid. In this way, C3-GAN succeeded in learning a clustering-friendly embedding space where each cluster is distinctively separable. Experimental results show that C3-GAN achieved the state-of-the-art clustering performance on four fine-grained image datasets, while also alleviating the mode collapse phenomenon. Code is available at https://github.com/naver-ai/c3-gan.

We consider the offline constrained reinforcement learning (RL) problem, in which the agent aims to compute a policy that maximizes expected return while satisfying given cost constraints, learning only from a pre-collected dataset. This problem setting is appealing in many real-world scenarios, where direct interaction with the environment is costly or risky, and where the resulting policy should comply with safety constraints. However, it is challenging to compute a policy that guarantees satisfying the cost constraints in the offline RL setting, since the off-policy evaluation inherently has an estimation error. In this paper, we present an offline constrained RL algorithm that optimizes the policy in the space of the stationary distribution. Our algorithm, COptiDICE, directly estimates the stationary distribution corrections of the optimal policy with respect to returns, while constraining the cost upper bound, with the goal of yielding a cost-conservative policy for actual constraint satisfaction. Experimental results show that COptiDICE attains better policies in terms of constraint satisfaction and return-maximization, outperforming baseline algorithms.

Deep learning has been actively studied for time series forecasting, and the mainstream paradigm is based on the end-to-end training of neural network architectures, ranging from classical LSTM/RNNs to more recent TCNs and Transformers. Motivated by the recent success of representation learning in computer vision and natural language processing, we argue that a more promising paradigm for time series forecasting, is to first learn disentangled feature representations, followed by a simple regression fine-tuning step -- we justify such a paradigm from a causal perspective. Following this principle, we propose a new time series representation learning framework for long sequence time series forecasting named CoST, which applies contrastive learning methods to learn disentangled seasonal-trend representations. CoST comprises both time domain and frequency domain contrastive losses to learn discriminative trend and seasonal representations, respectively. Extensive experiments on real-world datasets show that CoST consistently outperforms the state-of-the-art methods by a considerable margin, achieving a 21.3% improvement in MSE on multivariate benchmarks. It is also robust to various choices of backbone encoders, as well as downstream regressors. Code is available at https://github.com/salesforce/CoST.

We present in this paper a novel query formulation using dynamic anchor boxes for DETR and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box coordinates as queries in Transformer decoders and dynamically updates them layer-by-layer. Using box coordinates not only helps using explicit positional priors to improve the query-to-feature similarity measure and eliminate the slow training convergence issue in DETR, but also allows us to modulate the positional attention map using the box width and height information. Such a design makes it clear that queries in DETR can be implemented as performing soft ROI pooling layer-by-layer in a cascade manner. As a result, it leads to the best performance among the DETR-like detection models under the same setting, e.g. AP 45.7\% using R50 as backbone trained in 50 epochs. We also conducted extensive experiments to confirm our analysis and verify the effectiveness of our methods. Code will be released soon.


Advanced representation learning techniques require reliable and general evaluation methods. Recently, several algorithms based on the common idea of geometric and topological analysis of a manifold approximated from the learned data representations have been proposed. In this work, we introduce Delaunay Component Analysis (DCA) -- an evaluation algorithm which approximates the data manifold using a more suitable neighbourhood graph called Delaunay graph. This provides a reliable manifold estimation even for challenging geometric arrangements of representations such as clusters with varying shape and density as well as outliers, which is where existing methods often fail. Furthermore, we exploit the nature of Delaunay graphs and introduce a framework for assessing the quality of individual novel data representations. We experimentally validate the proposed DCA method on representations obtained from neural networks trained with contrastive objective, supervised and generative models, and demonstrate various use cases of our extended single point evaluation framework.

We consider offline imitation learning (IL), which aims to mimic the expert's behavior from its demonstration without further interaction with the environment. One of the main challenges in offline IL is to deal with the narrow support of the data distribution exhibited by the expert demonstrations that cover only a small fraction of the state and the action spaces. As a result, offline IL algorithms that rely only on expert demonstrations are very unstable since the situation easily deviates from those in the expert demonstrations. In this paper, we assume additional demonstration data of unknown degrees of optimality, which we call imperfect demonstrations. Under this setting, we propose DemoDICE, which effectively utilizes imperfect demonstrations by matching the stationary distribution of a policy with experts' distribution while penalizing its deviation from the overall demonstrations. Compared with the recent IL algorithms that adopt adversarial minimax training objectives, we substantially stabilize overall learning process by reducing minimax optimization to a direct convex optimization in a principled manner. Using extensive tasks, we show that DemoDICE achieves promising results in the offline IL from expert and imperfect demonstrations.

Large-scale pre-trained language models have contributed significantly to natural language processing by demonstrating remarkable abilities as few-shot learners. However, their effectiveness depends mainly on scaling the model parameters and prompt design, hindering their implementation in most real-world applications. This study proposes a novel pluggable, extensible, and efficient approach named DifferentiAble pRompT (DART), which can convert small language models into better few-shot learners. The main principle behind this approach involves reformulating potential natural language processing tasks into the task of a pre-trained language model and differentially optimizing the prompt template as well as the target label with backpropagation. Furthermore, the proposed approach can be: (i) Plugged to any pre-trained language models; (ii) Extended to widespread classification tasks. A comprehensive evaluation of standard NLP tasks demonstrates that the proposed approach achieves a better few-shot performance.

As machine learning models are deployed ever more broadly, it becomes increasingly important that they are not only able to perform well on their training distribution, but also yield accurate predictions when confronted with distribution shift. The Distributionally Robust Optimization (DRO) framework proposes to address this issue by training models to minimize their expected risk under a collection of distributions, to imitate test-time shifts. This is most commonly achieved by instance-level re-weighting of the training objective to emulate the likelihood ratio with possible test distributions, which allows for estimating their empirical risk via importance sampling (assuming that they are subpopulations of the training distribution). However, re-weighting schemes in the literature are usually limited due to the difficulty of keeping the optimization problem tractable and the complexity of enforcing normalization constraints. In this paper, we show that three simple ideas -- mini-batch level normalization, a KL penalty and simultaneous gradient updates -- allow us to train models with DRO using a broader class of parametric likelihood ratios. In a series of experiments on both image and text classification benchmarks, we find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO …


We introduce an adaptive tree search algorithm, which is a deterministic variant of Monte Carlo tree search, that can find high-scoring outputs under translation models that make no assumptions about the form or structure of the search objective. This algorithm enables the exploration of new kinds of models that are unencumbered by constraints imposed to make decoding tractable, such as autoregressivity or conditional independence assumptions. When applied to autoregressive models, our algorithm has different biases than beam search has, which enables a new analysis of the role of decoding bias in autoregressive models. Empirically, we show that our adaptive tree search algorithm finds outputs with substantially better model scores compared to beam search in autoregressive models, and compared to reranking techniques in models whose scores do not decompose additively with respect to the words in the output. We also characterise the correlation of several translation model objectives with respect to BLEU. We find that while some standard models are poorly calibrated and benefit from the beam search bias, other often more robust models (autoregressive models tuned to maximize expected automatic metric scores, the noisy channel model and a newly proposed objective) benefit from increasing amounts of search using our proposed …

Reinforcement Learning (RL) has achieved significant successes, which aims to obtain a single policy maximizing the expected cumulative rewards for a given task. However, in many real-world scenarios, e.g., navigating in complex environments and controlling robots, one may need to find a set of policies having both high rewards and diverse behaviors, which can bring better exploration and robust few-shot adaptation. Recently, some methods have been developed by using evolutionary techniques, including iterative reproduction and selection of policies. However, due to the inefficient selection mechanisms, these methods cannot fully guarantee both high quality and diversity. In this paper, we propose EDO-CS, a new Evolutionary Diversity Optimization algorithm with Clustering-based Selection. In each iteration, the policies are divided into several clusters based on their behaviors, and a high-quality policy is selected from each cluster for reproduction. EDO-CS also adaptively balances the importance between quality and diversity in the reproduction process. Experiments on various (i.e., deceptive and multi-modal) continuous control tasks, show the superior performance of EDO-CS over previous methods, i.e., EDO-CS can achieve a set of policies with both high quality and diversity efficiently while previous methods cannot.

Learning causal relationships in high-dimensional data (images, videos) is a hard task, as they are often defined on low dimensional manifolds and must be extracted from complex signals dominated by appearance, lighting, textures and also spurious correlations in the data. We present a method for learning counterfactual reasoning of physical processes in pixel space, which requires the prediction of the impact of interventions on initial conditions. Going beyond the identification of structural relationships, we deal with the challenging problem of forecasting raw video over long horizons. Our method does not require the knowledge or supervision of any ground truth positions or other object or scene properties. Our model learns and acts on a suitable hybrid latent representation based on a combination of dense features, sets of 2D keypoints and an additional latent vector per keypoint. We show that this better captures the dynamics of physical processes than purely dense or sparse representations. We introduce a new challenging and carefully designed counterfactual benchmark for predictions in pixel space and outperform strong baselines in physics-inspired ML and video prediction.

State-of-the-art text classification models are becoming increasingly reliant on deep neural networks (DNNs). Due to their black-box nature, faithful and robust explanation methods need to accompany classifiers for deployment in real-life scenarios. However, it has been shown that explanation methods in vision applications are susceptible to local, imperceptible perturbations that can significantly alter the explanations without changing the predicted classes. We show here that the existence of such perturbations extends to text classifiers as well. Specifically, we introduce TextExplanationFooler (TEF), a novel explanation attack algorithm that alters text input samples imperceptibly so that the outcome of widely-used explanation methods changes considerably while leaving classifier predictions unchanged. We evaluate the attribution robustness estimation performance of TEF on five text classification datasets, utilizing three DNN architectures and a transformer architecture for each dataset. By significantly decreasing the correlation between unchanged and perturbed input attributions, we show that all models and explanation methods are susceptible to TEF perturbations. Moreover, we evaluate how the perturbations transfer to other model architectures and attribution methods, finding better than random performance in scenarios where the exact attacked model and explanation method are unknown. Finally, we introduce a semi-universal attack that is able to compute fast, computationally light …


Potential games are arguably one of the most important and widely studied classes of normal form games. They define the archetypal setting of multi-agent coordination in which all agents utilities are perfectly aligned via a common potential function. Can this intuitive framework be transplanted in the setting of Markov games? What are the similarities and differences between multi-agent coordination with and without state dependence? To answer these questions, we study a natural class of Markov Potential Games (MPGs) that generalize prior attempts at capturing complex stateful multi-agent coordination. Counter-intuitively, insights from normal-form potential games do not carry over as MPGs involve settings where state-games can be zero-sum games. In the opposite direction, Markov games where every state-game is a potential game are not necessarily MPGs. Nevertheless, MPGs showcase standard desirable properties such as the existence of deterministic Nash policies. In our main technical result, we prove convergence of independent policy gradient and its stochastic counterpart to Nash policies (polynomially fast in the approximation error) by adapting recent gradient dominance property arguments developed for single-agent Markov decision processes to multi-agent learning settings.

Training a task-oriented dialogue agent can be naturally formulated as offline reinforcement learning (RL) problem, where the agent aims to learn a conversational strategy to achieve user goals, only from a dialogue corpus. It is very challenging in terms of RL since the natural language action space is astronomical, while feasible (syntactically and semantically correct) actions are very sparse. Thus, standard RL methods easily fail and generate responses diverging from human language, even when fine-tuning a powerful pre-trained language model. In this paper, we introduce GPT-Critic, an offline RL method for task-oriented dialogue. GPT-Critic is built upon GPT-2, fine-tuning the language model through behavior cloning of the critic-guided self-generated sentences. GPT-Critic is essentially free from the issue of diverging from human language since it learns from the sentences sampled from the pre-trained language model. In the experiments, we demonstrate that our algorithm outperforms the state-of-the-art in the task-oriented dialogue benchmarks including MultiWOZ 2.0 and ConvLab.

Plug-and-Play methods constitute a class of iterative algorithms for imaging problems where regularization is performed by an off-the-shelf denoiser. Although Plug-and-Play methods can lead to tremendous visual performance for various image problems, the few existing convergence guarantees are based on unrealistic (or suboptimal) hypotheses on the denoiser, or limited to strongly convex data terms. In this work, we propose a new type of Plug-and-Play methods, based on half-quadratic splitting, for which the denoiser is realized as a gradient descent step on a functional parameterized by a deep neural network. Exploiting convergence results for proximal gradient descent algorithms in the non-convex setting, we show that the proposed Plug-and-Play algorithm is a convergent iterative scheme that targets stationary points of an explicit global functional. Besides, experiments show that it is possible to learn such a deep denoiser while not compromising the performance in comparison to other state-of-the-art deep denoisers used in Plug-and-Play schemes. We apply our proximal gradient algorithm to various ill-posed inverse problems, e.g. deblurring, super-resolution and inpainting. For all these applications, numerical results empirically confirm the convergence results. Experiments also show that this new algorithm reaches state-of-the-art performance, both quantitatively and qualitatively.

There is increasing evidence suggesting neural networks' sensitivity to distribution shifts, so that research on out-of-distribution (OOD) generalization comes into the spotlight. Nonetheless, current endeavors mostly focus on Euclidean data, and its formulation for graph-structured data is not clear and remains under-explored, given two-fold fundamental challenges: 1) the inter-connection among nodes in one graph, which induces non-IID generation of data points even under the same environment, and 2) the structural information in the input graph, which is also informative for prediction. In this paper, we formulate the OOD problem on graphs and develop a new invariant learning approach, Explore-to-Extrapolate Risk Minimization (EERM), that facilitates graph neural networks to leverage invariance principles for prediction. EERM resorts to multiple context explorers (specified as graph structure editers in our case) that are adversarially trained to maximize the variance of risks from multiple virtual environments. Such a design enables the model to extrapolate from a single observed environment which is the common case for node-level prediction. We prove the validity of our method by theoretically showing its guarantee of a valid OOD solution and further demonstrate its power on various real-world datasets for handling distribution shifts from artificial spurious features, cross-domain transfers and dynamic …

Understanding how neural dynamics give rise to behaviour is one of the most fundamental questions in systems neuroscience. To achieve this, a common approach is to record neural populations in behaving animals, and model these data as emanating from a latent dynamical system whose state trajectories can then be related back to behavioural observations via some form of decoding. As recordings are typically performed in localized circuits that form only a part of the wider implicated network, it is important to simultaneously learn the local dynamics and infer any unobserved external input that might drive them. Here, we introduce iLQR-VAE, a novel control-based approach to variational inference in nonlinear dynamical systems, capable of learning both latent dynamics, initial conditions, and ongoing external inputs. As in recent deep learning approaches, our method is based on an input-driven sequential variational autoencoder (VAE). The main novelty lies in the use of the powerful iterative linear quadratic regulator algorithm (iLQR) in the recognition model. Optimization of the standard evidence lower-bound requires differentiating through iLQR solutions, which is made possible by recent advances in differentiable control. Importantly, having the recognition model be implicitly defined by the generative model greatly reduces the number of free parameters …

Imitation learning algorithms learn a policy from demonstrations of expert behavior. We show that, for deterministic experts, imitation learning can be done by reduction to reinforcement learning with a stationary reward. Our theoretical analysis both certifies the recovery of expert reward and bounds the total variation distance between the expert and the imitation learner, showing a link to adversarial imitation learning. We conduct experiments which confirm that our reduction works well in practice for continuous control tasks.

We address the problem of building agents whose goal is to learn to execute out-of distribution (OOD) multi-task instructions expressed in temporal logic (TL) by using deep reinforcement learning (DRL). Recent works provided evidence that the agent's neural architecture is a key feature when DRL agents are learning to solve OOD tasks in TL. Yet, the studies on this topic are still in their infancy. In this work, we propose a new deep learning configuration with inductive biases that lead agents to generate latent representations of their current goal, yielding a stronger generalization performance. We use these latent-goal networks within a neuro-symbolic framework that executes multi-task formally-defined instructions and contrast the performance of the proposed neural networks against employing different state-of-the-art (SOTA) architectures when generalizing to unseen instructions in OOD environments.

Human decision making is well known to be imperfect and the ability to analyse such processes individually is crucial when attempting to aid or improve a decision-maker's ability to perform a task, e.g. to alert them to potential biases or oversights on their part. To do so, it is necessary to develop interpretable representations of how agents make decisions and how this process changes over time as the agent learns online in reaction to the accrued experience. To then understand the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem. By interpreting actions within a potential outcomes framework, we introduce a meaningful mapping based on agents choosing an action they believe to have the greatest treatment effect. We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them, using a novel architecture built upon an expressive family of deep state-space models. Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.

Denoising diffusion probabilistic models have recently received much research attention since they outperform alternative approaches, such as GANs, and currently provide state-of-the-art generative performance. The superior performance of diffusion models has made them an appealing tool in several applications, including inpainting, super-resolution, and semantic editing. In this paper, we demonstrate that diffusion models can also serve as an instrument for semantic segmentation, especially in the setup when labeled data is scarce. In particular, for several pretrained diffusion models, we investigate the intermediate activations from the networks that perform the Markov step of the reverse diffusion process. We show that these activations effectively capture the semantic information from an input image and appear to be excellent pixel-level representations for the segmentation problem. Based on these observations, we describe a simple segmentation method, which can work even if only a few training images are provided. Our approach significantly outperforms the existing alternatives on several datasets for the same amount of human supervision.

Online 3D Bin Packing Problem (3D-BPP) has widespread applications in industrial automation and has aroused enthusiastic research interest recently. Existing methods usually solve the problem with limited resolution of spatial discretization, and/or cannot deal with complex practical constraints well. We propose to enhance the practical applicability of online 3D-BPP via learning on a novel hierarchical representation – packing configuration tree (PCT). PCT is a full-fledged description of the state and action space of bin packing which can support packing policy learning based on deep reinforcement learning (DRL). The size of the packing action space is proportional to the number of leaf nodes, making the DRL model easy to train and well-performing even with continuous solution space. During training, PCT expands based on heuristic rules, however, the DRL model learns a much more effective and robust packing policy than heuristic methods. Through extensive evaluation, we demonstrate that our method outperforms all existing online BPP methods and is versatile in terms of incorporating various practical constraints.

Recent advances at the intersection of dense large graph limits and mean field games have begun to enable the scalable analysis of a broad class of dynamical sequential games with large numbers of agents. So far, results have been largely limited to graphon mean field systems with continuous-time diffusive or jump dynamics, typically without control and with little focus on computational methods. We propose a novel discrete-time formulation for graphon mean field games as the limit of non-linear dense graph Markov games with weak interaction. On the theoretical side, we give extensive and rigorous existence and approximation properties of the graphon mean field solution in sufficiently large systems. On the practical side we provide general learning schemes for graphon mean field equilibria by either introducing agent equivalence classes or reformulating the graphon mean field system as a classical mean field system. By repeatedly finding a regularized optimal control solution and its generated mean field, we successfully obtain plausible approximate Nash equilibria in otherwise infeasible large dense graph games with many agents. Empirically, we are able to demonstrate on a number of examples that the finite-agent behavior comes increasingly close to the mean field behavior for our computed equilibria as the …

Convolutional neural networks typically contain several downsampling operators, such as strided convolutions or pooling layers, that progressively reduce the resolution of intermediate representations. This provides some shift-invariance while reducing the computational complexity of the whole architecture. A critical hyperparameter of such layers is their stride: the integer factor of downsampling. As strides are not differentiable, finding the best configuration either requires cross-validation or discrete optimization (e.g. architecture search), which rapidly become prohibitive as the search space grows exponentially with the number of downsampling layers. Hence, exploring this search space by gradient descent would allow finding better configurations at a lower computational cost. This work introduces DiffStride, the first downsampling layer with learnable strides. Our layer learns the size of a cropping mask in the Fourier domain, that effectively performs resizing in a differentiable way. Experiments on audio and image classification show the generality and effectiveness of our solution: we use DiffStride as a drop-in replacement to standard downsampling layers and outperform them. In particular, we show that introducing our layer into a ResNet-18 architecture allows keeping consistent high performance on CIFAR10, CIFAR100 and ImageNet even when training starts from poor random stride configurations. Moreover, formulating strides as learnable variables allows …

We propose a new method for spatio-temporal forecasting on arbitrarily distributed points. Assuming that the observed system follows an unknown partial differential equation, we derive a continuous-time model for the dynamics of the data via the finite element method. The resulting graph neural network estimates the instantaneous effects of the unknown dynamics on each cell in a meshing of the spatial domain. Our model can incorporate prior knowledge via assumptions on the form of the unknown PDE, which induce a structural bias towards learning specific processes. Through this mechanism, we derive a transport variant of our model from the convection equation and show that it improves the transfer performance to higher-resolution meshes on sea surface temperature and gas flow forecasting against baseline models representing a selection of spatio-temporal forecasting methods. A qualitative analysis shows that our model disentangles the data dynamics into their constituent parts, which makes it uniquely interpretable.

Many computer vision systems require low-cost segmentation algorithms based on deep learning, either because of the enormous size of input images or limited computational budget. Common solutions uniformly downsample the input images to meet memory constraints, assuming all pixels are equally informative. In this work, we demonstrate that this assumption can harm the segmentation performancebecause the segmentation difficulty varies spatially (see Figure 1 “Uniform”). We combat this problem by introducing a learnable downsampling module, which can be optimised together with the given segmentation model in an end-to-end fashion. We formulate the problem of training such downsampling module as optimisation of sampling density distributions over the input images given their low-resolution views. To defend against degenerate solutions (e.g. over-sampling trivial regions like the backgrounds), we propose a regularisation term that encourages the sampling locations to concentrate around the object boundaries. We find the downsamplingmodule learns to sample more densely at difficult locations, thereby improving the segmentation performance (see Figure 1 "Ours"). Our experiments on benchmarks of high-resolution street view, aerial and medical images demonstrate substantial improvements in terms of efficiency-and-accuracy trade-off compared to both uniform downsampling and two recent advanced downsampling techniques.

With little to no parallel data available for programming languages, unsupervised methods are well-suited to source code translation. However, the majority of unsupervised machine translation approaches rely on back-translation, a method developed in the context of natural language translation and one that inherently involves training on noisy inputs. Unfortunately, source code is highly sensitive to small changes; a single token can result in compilation failures or erroneous programs, unlike natural languages where small inaccuracies may not change the meaning of a sentence. To address this issue, we propose to leverage an automated unit-testing system to filter out invalid translations, thereby creating a fully tested parallel corpus. We found that fine-tuning an unsupervised model with this filtered data set significantly reduces the noise in the translations so-generated, comfortably outperforming the state-of-the-art for all language pairs studied. In particular, for Java→Python and Python→C++ we outperform the best previous methods by more than 16% and 24% respectively, reducing the error rate by more than 35%.

Model-agnostic meta-learning (MAML) is one of the most popular and widely adopted meta-learning algorithms, achieving remarkable success in various learning problems. Yet, with the unique design of nested inner-loop and outer-loop updates, which govern the task-specific and meta-model-centric learning, respectively, the underlying learning objective of MAML remains implicit, impeding a more straightforward understanding of it. In this paper, we provide a new perspective of the working mechanism of MAML. We discover that MAML is analogous to a meta-learner using a supervised contrastive objective in classification. The query features are pulled towards the support features of the same class and against those of different classes. Such contrastiveness is experimentally verified via an analysis based on the cosine similarity. Moreover, we reveal that vanilla MAML has an undesirable interference term originating from the random initialization and the cross-task interaction. We thus propose a simple but effective technique, the zeroing trick, to alleviate the interference. Extensive experiments are conducted on both mini-ImageNet and Omniglot datasets to validate the consistent improvement brought by our proposed method.


The ability to perceive scenes in terms of abstract entities is crucial for us toachieve higher-level intelligence. Recently, several methods have been proposedto learn object-centric representations of scenes with multiple objects, yet mostof which focus on static scenes. In this paper, we work on object dynamics andpropose Object Dynamics Distillation Network (ODDN), a framework that distillates explicit object dynamics (e.g., velocity) from sequential static representations. ODDN also builds a relation module to model object interactions. We verifyour approach on tasks of video reasoning and video prediction, which are two important evaluations for video understanding. The results show that the reasoningmodel with visual representations of ODDN performs better in answering reasoning questions around physical events in a video compared to the previous state-of-the-art methods. The distilled object dynamics also could be used to predictfuture video frames given two input frames, involving occlusion and objects collision. In addition, our architecture brings better segmentation quality and higherreconstruction accuracy.

Offline policy learning (OPL) leverages existing data collected a priori for policy optimization without any active exploration. Despite the prevalence and recent interest in this problem, its theoretical and algorithmic foundations in function approximation settings remain under-developed. In this paper, we consider this problem on the axes of distributional shift, optimization, and generalization in offline contextual bandits with neural networks. In particular, we propose a provably efficient offline contextual bandit with neural network function approximation that does not require any functional assumption on the reward. We show that our method provably generalizes over unseen contexts under a milder condition for distributional shift than the existing OPL works. Notably, unlike any other OPL method, our method learns from the offline data in an online manner using stochastic gradient descent, allowing us to leverage the benefits of online learning into an offline setting. Moreover, we show that our method is more computationally efficient and has a better dependence on the effective dimension of the neural network than an online counterpart. Finally, we demonstrate the empirical effectiveness of our method in a range of synthetic and real-world OPL problems.

The lottery ticket hypothesis questions the role of overparameterization in supervised deep learning. But how is the performance of winning lottery tickets affected by the distributional shift inherent to reinforcement learning problems? In this work, we address this question by comparing sparse agents who have to address the non-stationarity of the exploration-exploitation problem with supervised agents trained to imitate an expert. We show that feed-forward networks trained with behavioural cloning compared to reinforcement learning can be pruned to higher levels of sparsity without performance degradation. This suggests that in order to solve the RL-specific distributional shift agents require more degrees of freedom. Using a set of carefully designed baseline conditions, we find that the majority of the lottery ticket effect in both learning paradigms can be attributed to the identified mask rather than the weight initialization. The input layer mask selectively prunes entire input dimensions that turn out to be irrelevant for the task at hand. At a moderate level of sparsity the mask identified by iterative magnitude pruning yields minimal task-relevant representations, i.e., an interpretable inductive bias. Finally, we propose a simple initialization rescaling which promotes the robust identification of sparse task representations in low-dimensional control tasks.

Encoder-decoder architectures have recently gained popularity in sequence to sequence modelling, featuring in state-of-the-art models such as transformers. However, a mathematical understanding of their working principles still remains limited. In this paper, we study the approximation properties of recurrent encoder-decoder architectures. Prior work established theoretical results for RNNs in the linear setting, where approximation capabilities can be related to smoothness and memory of target temporal relationships. Here, we uncover that the encoder and decoder together form a particular “temporal product structure” which determines the approximation efficiency. Moreover, the encoder-decoder architecture generalises RNNs with the capability to learn time-inhomogeneous relationships. Our results provide the theoretical understanding of approximation properties of the recurrent encoder-decoder architecture, which precisely characterises, in the considered setting, the types of temporal relationships that can be efficiently learned.

It is attracting attention to the long-tailed recognition problem, a burning issue that has become very popular recently. Distinctive from conventional recognition is that it posits that the allocation of the training set is supremely distorted. Predictably, it will pose challenges to the generalisation behaviour of the model. Approaches to these challenges revolve into two groups: firstly, training-aware methods, with the aim of enhancing the generalisability of the model by exploiting its potential in the training period; and secondly, post-hoc correction, liberally coupled with training-aware methods, which is intended to refine the predictions to the extent possible in the post-processing stage, offering the advantages of simplicity and effectiveness. This paper introduces an alternative direction to do the post-hoc correction, which goes beyond the statistical methods. Mathematically, we approach this issue from the perspective of optimal transport (OT), yet, choosing the exact cost matrix when applying OT is challenging and requires expert knowledge of various tasks. To overcome this limitation, we propose to employ linear mapping to learn the cost matrix without necessary configurations adaptively. Testing our methods in practice, along with high efficiency and excellent performance, our method surpasses all previous methods and has the best performance to date.


Deep convolutional classifiers linearly separate image classes and improve accuracy as depth increases. They progressively reduce the spatial dimension whereas the number of channels grows with depth. Spatial variability is therefore transformed into variability along channels. A fundamental challenge is to understand the role of non-linearities together with convolutional filters in this transformation. ReLUs with biases are often interpreted as thresholding operators that improve discrimination through sparsity. This paper demonstrates that it is a different mechanism called \emph{phase collapse} which eliminates spatial variability while linearly separating classes. We show that collapsing the phases of complex wavelet coefficients is sufficient to reach the classification accuracy of ResNets of similar depths. However, replacing the phase collapses with thresholding operators that enforce sparsity considerably degrades the performance. We explain these numerical results by showing that the iteration of phase collapses progressively improves separation of classes, as opposed to thresholding non-linearities.

In psychology, relational learning refers to the ability to recognize and respond to relationship among objects irrespective of the nature of those objects. Relational learning has long been recognized as a hallmark of human cognition and a key question in artificial intelligence research. In this work, we propose an unsupervised learning method for addressing the relational learning problem where we learn the underlying relationship between a pair of data irrespective of the nature of those data. The central idea of the proposed method is to encapsulate the relational learning problem with a probabilistic graphical model in which we perform inference to learn about data relationship and other relational processing tasks.

The performance of supervised learning methods easily suffers from the training bias issue caused by train-test distribution mismatch or label noise. Influence function is a technique that estimates the impacts of a training sample on the model’s predictions. Recent studies on \emph{data resampling} have employed influence functions to identify \emph{harmful} training samples that will degrade model's test performance. They have shown that discarding or downweighting the identified harmful training samples is an effective way to resolve training biases. In this work, we move one step forward and propose an influence-based relabeling framework named RDIA for reusing harmful training samples toward better model performance. To achieve this, we use influence functions to estimate how relabeling a training sample would affect model's test performance and further develop a novel relabeling function R. We theoretically prove that applying R to relabel harmful training samples allows the model to achieve lower test loss than simply discarding them for any classification tasks using cross-entropy loss. Extensive experiments on ten real-world datasets demonstrate RDIA outperforms the state-of-the-art data resampling methods and improves model's robustness against label noise.

The pretrain-finetune paradigm has shown outstanding performance on many applications of deep learning, where a model is pre-trained on an upstream large dataset (e.g. ImageNet), and is then fine-tuned to different downstream tasks. Though for most cases, the pre-training stage is conducted based on supervised methods, recent works on self-supervised pre-training have shown powerful transferability and even outperform supervised pre-training on multiple downstream tasks. It thus remains an open question how to better generalize supervised pre- training model to downstream tasks. In this paper, we argue that the worse transferability of existing supervised pre-training methods arise from the negligence of valuable intra-class semantic difference. This is because these methods tend to push images from the same class close to each other despite of the large diversity in their visual contents, a problem to which referred as “overfit of upstream tasks”. To alleviate this problem, we propose a new supervised pre-training method based on Leave-One-Out K-Nearest-Neighbor, or LOOK for short. It relieves the problem of overfitting upstream tasks by only requiring each image to share its class label with most of its k nearest neighbors, thus allowing each class to exhibit a multi-mode distribution and consequentially preserving part of intra-class difference …

Recently over-smoothing phenomenon of Transformer-based models is observed in both vision and language fields. However, no existing work has delved deeper to further investigate the main cause of this phenomenon. In this work, we make the attempt to analyze the over-smoothing problem from the perspective of graph, where such problem was first discovered and explored. Intuitively, the self-attention matrix can be seen as a normalized adjacent matrix of a corresponding graph. Based on the above connection, we provide some theoretical analysis and find that layer normalization plays a key role in the over-smoothing issue of Transformer-based models. Specifically, if the standard deviation of layer normalization is sufficiently large, the output of Transformer stacks will converge to a specific low-rank subspace and result in over-smoothing. To alleviate the over-smoothing problem, we consider hierarchical fusion strategies, which combine the representations from different layers adaptively to make the output more diverse. Extensive experiment results on various data sets illustrate the effect of our fusion method.

Convolutional neural networks (CNNs) constructed natively on the sphere have been developed recently and shown to be highly effective for the analysis of spherical data. While an efficient framework has been formulated, spherical CNNs are nevertheless highly computationally demanding; typically they cannot scale beyond spherical signals of thousands of pixels. We develop scattering networks constructed natively on the sphere that provide a powerful representational space for spherical data. Spherical scattering networks are computationally scalable and exhibit rotational equivariance, while their representational space is invariant to isometries and provides efficient and stable signal representations. By integrating scattering networks as an additional type of layer in the generalized spherical CNN framework, we show how they can be leveraged to scale spherical CNNs to the high-resolution data typical of many practical applications, with spherical signals of many tens of megapixels and beyond.

We perform approximate inference in state-space models with nonlinear state transitions. Without parameterizing a generative model, we apply Bayesian update formulas using a local linearity approximation parameterized by neural networks. It comes accompanied by a maximum likelihood objective that requires no supervision via uncorrupt observations or ground truth latent states. The optimization backpropagates through a recursion similar to the classical Kalman filter and smoother. Additionally, using an approximate conditional independence, we can perform smoothing without having to parameterize a separate model. In scientific applications, domain knowledge can give a linear approximation of the latent transition maps, which we can easily incorporate into our model. Usage of such domain knowledge is reflected in excellent results (despite our model's simplicity) on the chaotic Lorenz system compared to fully supervised and variational inference methods. Finally, we show competitive results on an audio denoising experiment.

In this paper we show that simple noisy regularisation can be an effective way to address oversmoothing. We first argue that regularisers ad-dressing oversmoothing should both penalise node latent similarity and encourage meaningful node representations. From this observation we derive “Noisy Nodes”,a simple technique in which we corrupt the input graph with noise, and add a noise correcting node-level loss. The diverse node level loss encourages latent node diversity, and the denoising objective encourages graph manifold learning. Our regulariser applies well-studied methods in simple, straightforward ways which allow even generic architectures to overcome oversmoothing and achieve state of the art results on quantum chemistry tasks such as QM9 and Open Catalyst, and improve results significantly on Open Graph Benchmark (OGB) datasets. Our results suggest Noisy Nodes can serve as a complementary building block in the GNN toolkit.

In this paper, we perform an in-depth study of the properties and applications of aligned generative models.We refer to two models as aligned if they share the same architecture, and one of them (the child) is obtained from the other (the parent) via fine-tuning to another domain, a common practice in transfer learning. Several works already utilize some basic properties of aligned StyleGAN models to perform image-to-image translation. Here, we perform the first detailed exploration of model alignment, also focusing on StyleGAN. First, we empirically analyze aligned models and provide answers to important questions regarding their nature. In particular, we find that the child model's latent spaces are semantically aligned with those of the parent, inheriting incredibly rich semantics, even for distant data domains such as human faces and churches. Second, equipped with this better understanding, we leverage aligned models to solve a diverse set of tasks. In addition to image translation, we demonstrate fully automatic cross-domain image morphing. We further show that zero-shot vision tasks may be performed in the child domain, while relying exclusively on supervision in the parent domain. We demonstrate qualitatively and quantitatively that our approach yields state-of-the-art results, while requiring only simple fine-tuning and inversion.

Learning in games has become an object of intense interest for ML due to its connections to numerous AI architectures. We study standard online learning in games but from a non-standard perspective. Instead of studying the behavior of a single initial condition and whether it converges to equilibrium or not, we study the behavior of a probability distribution/measure over a set of initial conditions. This initial uncertainty is well-motivated both from a standard game-theoretic perspective (e.g. a modeler's uncertainty about the agents' initial beliefs) as well as from a ML one (e.g. noisy measurements, system initialization from a dataset distribution). Despite this, little is formally known about whether and under what conditions uncertainty is amplified or reduced in these systems. We use the popular measure of differential entropy to quantify the evolution of uncertainty. We find that such analysis shares an intimate relationship with volume analysis, a technique which was recently used to demonstrate the occurrence of Lyapunov chaos when using Multiplicative Weights Update (MWU) or Follow-the-Regularized-Leader (FTRL) algorithms in zero-sum games. This allows us to show that the differential entropy of these learning-in-game systems increases linearly with time, formalizing their increased unpredictability over time. We showcase the power of …

This work addresses one-shot set and graph generation, and, more specifically, the parametrization of probabilistic decoders that map a vector-shaped prior to a distribution over sets or graphs. Sets and graphs are most commonly generated by first sampling points i.i.d. from a normal distribution, and then processing these points along with the prior vector using Transformer layers or Graph Neural Networks. This architecture is designed to generate exchangeable distributions, i.e., all permutations of the generated outputs are equally likely. We however show that it only optimizes a proxy to the evidence lower bound, which makes it hard to train. We then study equivariance in generative settings and show that non-exchangeable methods can still achieve permutation equivariance. Using this result, we introduce Top-n creation, a differentiable generation mechanism that uses the latent vector to select the most relevant points from a trainable reference set. Top-n can replace i.i.d. generation in any Variational Autoencoder or Generative Adversarial Network. Experimentally, our method outperforms i.i.d. generation by 15% at SetMNIST reconstruction, by 33% at object detection on CLEVR, generates sets that are 74% closer to the true distribution on a synthetic molecule-like dataset, and generates more valid molecules on QM9.

Currently, it is hard to reap the benefits of deep learning for Bayesian methods, which allow the explicit specification of prior knowledge and accurately capture model uncertainty. We present Prior-Data Fitted Networks (PFNs). PFNs leverage large-scale machine learning techniques to approximate a large set of posteriors. The only requirement for PFNs to work is the ability to sample from a prior distribution over supervised learning tasks (or functions). Our method restates the objective of posterior approximation as a supervised classification problem with a set-valued input: it repeatedly draws a task (or function) from the prior, draws a set of data points and their labels from it, masks one of the labels and learns to make probabilistic predictions for it based on the set-valued input of the rest of the data points. Presented with a set of samples from a new supervised learning task as input, PFNs make probabilistic predictions for arbitrary other data points in a single forward propagation, having learned to approximate Bayesian inference. We demonstrate that PFNs can near-perfectly mimic Gaussian processes and also enable efficient Bayesian inference for intractable problems, with over 200-fold speedups in multiple setups compared to current methods. We obtain strong results in very …


We introduce a new task, unsupervised vision-language (VL) grammar induction. Given an image-caption pair, the goal is to extract a shared hierarchical structure for both image and language simultaneously. We argue that such structured output, grounded in both modalities, is a clear step towards the high-level understanding of multimodal information. Besides challenges existing in conventional visually grounded grammar induction tasks, VL grammar induction requires a model to capture contextual semantics and perform a fine-grained alignment. To address these challenges, we propose a novel method, CLIORA, which constructs a shared vision-language constituency tree structure with context-dependent semantics for all possible phrases in different levels of the tree. It computes a matching score between each constituent and image region, trained via contrastive learning. It integrates two levels of fusion, namely at feature-level and at score-level, so as to allow fine-grained alignment. We introduce a new evaluation metric for VL grammar induction, CCRA, and show a 3.3% improvement over a strong baseline on Flickr30k Entities. We also evaluate our model via two derived tasks, i.e., language grammar induction and phrase grounding, and improve over the state-of-the-art for both.

The importance of Variational Autoencoders reaches far beyond standalone generative models -- the approach is also used for learning latent representations and can be generalized to semi-supervised learning. This requires a thorough analysis of their commonly known shortcomings: posterior collapse and approximation errors. This paper analyzes VAE approximation errors caused by the combination of the ELBO objective and encoder models from conditional exponential families, including, but not limited to, commonly used conditionally independent discrete and continuous models.We characterize subclasses of generative models consistent with these encoder families. We show that the ELBO optimizer is pulled away from the likelihood optimizer towards the consistent subset and study this effect experimentally. Importantly, this subset can not be enlarged, and the respective error cannot be decreased, by considering deeper encoder/decoder networks.

An important component for generalization in machine learning is to uncover underlying latent factors of variation as well as the mechanism through which each factor acts in the world.In this paper, we test whether 17 unsupervised, weakly supervised, and fully supervised representation learning approaches correctly infer the generative factors of variation in simple datasets (dSprites, Shapes3D, MPI3D) from controlled environments, and on our contributed CelebGlow dataset. In contrast to prior robustness work that introduces novel factors of variation during test time, such as blur or other (un)structured noise, we here recompose, interpolate, or extrapolate only existing factors of variation from the training data set (e.g., small and medium-sized objects during training and large objects during testing). Models that learn the correct mechanism should be able to generalize to this benchmark.In total, we train and test 2000+ models and observe that all of them struggle to learn the underlying mechanism regardless of supervision signal and architectural bias. Moreover, the generalization capabilities of all tested models drop significantly as we move from artificial datasets towards more realistic real-world datasets.Despite their inability to identify the correct mechanism, the models are quite modular as their ability to infer other in-distribution factors remains fairly stable, …

A fundamental shortcoming of deep neural networks is their specialization to a single task and domain. While multi-domain learning enables the learning of compact models that span multiple visual domains, these rely on the presence of domain labels, in turn requiring laborious curation of datasets. This paper proposes a less explored, but highly realistic new setting called latent domain learning: learning over data from different domains, without access to domain annotations. Experiments show that this setting is challenging for standard models and existing multi-domain approaches, calling for new customized solutions: a sparse adaptation strategy is formulated which enhances performance by accounting for latent domains in data. Our method can be paired seamlessly with existing models, and benefits conceptually related tasks, e.g. empirical fairness problems and long-tailed recognition.
Invited Talk: John Amuasi
Representation Learning in the Global South: Societal Considerations-Fairness, Safety and Privacy
Bio :
Poster Session 5 Tue 26 Apr 05:30 p.m.
[ Virtual ]

While a popular limit of infinite-width neural networks, the Neural Tangent Kernel (NTK) often exhibits performance gaps from finite-width neural networks on standard datasets, due to lack of feature learning. Although the feature learning maximal update limit, or μ-limit (Yang and Hu, 2020) of wide networks has closed the gap for 1-hidden-layer linear models, no one has been able to demonstrate this for deep nonlinear multi-layer perceptrons (MLP) because of μ-limit’s computational difficulty in this setting. Here, we solve this problem by proposing a novel feature learning limit, the π-limit, that bypasses the computational issues. The π-limit, in short, is the limit of a form of projected gradient descent, and the π-limit of an MLP is roughly another MLP where gradients are appended to weights during training. We prove its almost sure convergence with width using the Tensor Programs technique. We evaluate it on CIFAR10 and Omniglot against NTK as well as finite networks, finding the π-limit outperform finite-width models trained normally (without projection) in both settings, closing the performance gap between finite- and infinite-width neural networks previously left by NTK. Code for this work is available at github.com/santacml/pilim.
[ Virtual ]

Mutual information (MI) is a fundamental quantity in information theory and machine learning. However, direct estimation of mutual information is intractable, even if the true joint probability density for the variables of interest is known, as it involves estimating a potentially high-dimensional log partition function. In this work, we view mutual information estimation from the perspective of importance sampling. Since naive importance sampling with the marginal distribution as a proposal requires exponential sample complexity in the true mutual information, we propose several improved proposals which assume additional density information is available. In settings where the full joint distribution is available, we propose Multi-Sample Annealed Importance Sampling (AIS) bounds on mutual information, which we demonstrate can tightly estimate large values of MI in our experiments. In settings where only a single marginal distribution is known, our MINE-AIS method improves upon existing variational methods by directly optimizing a tighter lower bound on MI, using energy-based training to estimate gradients and Multi-Sample AIS for evaluation. Our methods are particularly suitable for evaluating MI in deep generative models, since explicit forms for the marginal or joint densities are often available. We evaluate our bounds on estimating the MI of VAEs and GANs trained on …
[ Virtual ]

Image denoising and artefact removal are complex inverse problems admitting multiple valid solutions. Unsupervised diversity restoration, that is, obtaining a diverse set of possible restorations given a corrupted image, is important for ambiguity removal in many applications such as microscopy where paired data for supervised training are often unobtainable. In real world applications, imaging noise and artefacts are typically hard to model, leading to unsatisfactory performance of existing unsupervised approaches. This work presents an interpretable approach for unsupervised and diverse image restoration. To this end, we introduce a capable architecture called Hierarchical DivNoising (HDN) based on hierarchical Variational Autoencoder. We show that HDN learns an interpretable multi-scale representation of artefacts and we leverage this interpretability to remove imaging artefacts commonly occurring in microscopy data. Our method achieves state-of-the-art results on twelve benchmark image denoising datasets while providing access to a whole distribution of sensibly restored solutions.Additionally, we demonstrate on three real microscopy datasets that HDN removes artefacts without supervision, being the first method capable of doing so while generating multiple plausible restorations all consistent with the given corrupted image.
[ Virtual ]

Intelligent agents can solve tasks in various ways depending on their available set of actions. However, conventional reinforcement learning (RL) assumes a fixed action set. This work asserts that tasks with varying action sets require reasoning of the relations between the available actions. For instance, taking a nail-action in a repair task is meaningful only if a hammer-action is also available. To learn and utilize such action relations, we propose a novel policy architecture consisting of a graph attention network over the available actions. We show that our model makes informed action decisions by correctly attending to other related actions in both value-based and policy-based RL. Consequently, it outperforms non-relational architectures on applications where the action space often varies, such as recommender systems and physical reasoning with tools and skills. Results and code at https://sites.google.com/view/varyingaction .
[ Virtual ]

Deep neural networks are used for a wide range of regression problems. However, there exists a significant gap in accuracy between specialized approaches and generic direct regression in which a network is trained by minimizing the squared or absolute error of output labels. Prior work has shown that solving a regression problem with a set of binary classifiers can improve accuracy by utilizing well-studied binary classification algorithms. We introduce binary-encoded labels (BEL), which generalizes the application of binary classification to regression by providing a framework for considering arbitrary multi-bit values when encoding target values. We identify desirable properties of suitable encoding and decoding functions used for the conversion between real-valued and binary-encoded labels based on theoretical and empirical study. These properties highlight a tradeoff between classification error probability and error-correction capabilities of label encodings. BEL can be combined with off-the-shelf task-specific feature extractors and trained end-to-end. We propose a series of sample encoding, decoding, and training loss functions for BEL and demonstrate they result in lower error than direct regression and specialized approaches while being suitable for a diverse set of regression problems, network architectures, and evaluation metrics. BEL achieves state-of-the-art accuracies for several regression benchmarks. Code is available at …
[ Virtual ]

One potential drawback of using aggregated performance measurement in machine learning is that models may learn to accept higher errors on some training cases as compromises for lower errors on others, with the lower errors actually being instances of overfitting. This can lead both to stagnation at local optima and to poor generalization. Lexicase selection is an uncompromising method developed in evolutionary computation, which selects models on the basis of sequences of individual training case errors instead of using aggregated metrics such as loss and accuracy. In this paper, we investigate how the general idea of lexicase selection can fit into the context of deep learning to improve generalization. We propose Gradient Lexicase Selection, an optimization framework that combines gradient descent and lexicase selection in an evolutionary fashion. Experimental results show that the proposed method improves the generalization performance of various popular deep neural network architectures on three image classification benchmarks. Qualitative analysis also indicates that our method helps the networks learn more diverse representations.
[ Virtual ]

Backdoor attacks (BAs) are an emerging threat to deep neural network classifiers. A victim classifier will predict to an attacker-desired target class whenever a test sample is embedded with the same backdoor pattern (BP) that was used to poison the classifier's training set. Detecting whether a classifier is backdoor attacked is not easy in practice, especially when the defender is, e.g., a downstream user without access to the classifier's training set. This challenge is addressed here by a reverse-engineering defense (RED), which has been shown to yield state-of-the-art performance in several domains. However, existing REDs are not applicable when there are only two classes or when multiple attacks are present. These scenarios are first studied in the current paper, under the practical constraints that the defender neither has access to the classifier's training set nor to supervision from clean reference classifiers trained for the same domain. We propose a detection framework based on BP reverse-engineering and a novel expected transferability (ET) statistic. We show that our ET statistic is effective using the same detection threshold, irrespective of the classification domain, the attack configuration, and the BP reverse-engineering algorithm that is used. The excellent performance of our method is demonstrated on …
[ Virtual ]

Committee-based models (ensembles or cascades) construct models by combining existing pre-trained ones. While ensembles and cascades are well-known techniques that were proposed before deep learning, they are not considered a core building block of deep model architectures and are rarely compared to in recent literature on developing efficient models. In this work, we go back to basics and conduct a comprehensive analysis of the efficiency of committee-based models. We find that even the most simplistic method for building committees from existing, independently pre-trained models can match or exceed the accuracy of state-of-the-art models while being drastically more efficient. These simple committee-based models also outperform sophisticated neural architecture search methods (e.g., BigNAS). These findings hold true for several tasks, including image classification, video classification, and semantic segmentation, and various architecture families, such as ViT, EfficientNet, ResNet, MobileNetV2, and X3D. Our results show that an EfficientNet cascade can achieve a 5.4x speedup over B7 and a ViT cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.
[ Virtual ]

[ Virtual ]

When the available hardware cannot meet the memory and compute requirements to efficiently train high performing machine learning models, a compromise in either the training quality or the model complexity is needed. In Federated Learning (FL), nodes are orders of magnitude more constrained than traditional server-grade hardware and are often battery powered, severely limiting the sophistication of models that can be trained under this paradigm. While most research has focused on designing better aggregation strategies to improve convergence rates and in alleviating the communication costs of FL, fewer efforts have been devoted to accelerating on-device training. Such stage, which repeats hundreds of times (i.e. every round) and can involve thousands of devices, accounts for the majority of the time required to train federated models and, the totality of the energy consumption at the client side. In this work, we present the first study on the unique aspects that arise when introducing sparsity at training time in FL workloads. We then propose ZeroFL, a framework that relies on highly sparse operations to accelerate on-device training. Models trained with ZeroFL and 95% sparsity achieve up to 2.3% higher accuracy compared to competitive baselines obtained from adapting a state-of-the-art sparse training framework to …

We propose a novel end-to-end framework for whole-brain and whole-genome imaging-genetics. Our genetics network uses hierarchical graph convolution and pooling operations to embed subject-level data onto a low-dimensional latent space. The hierarchical network implicitly tracks the convergence of genetic risk across well-established biological pathways, while an attention mechanism automatically identifies the salient edges of this network at the subject level. In parallel, our imaging network projects multimodal data onto a set of latent embeddings. For interpretability, we implement a Bayesian feature selection strategy to extract the discriminative imaging biomarkers; these feature weights are optimized alongside the other model parameters. We couple the imaging and genetic embeddings with a predictor network, to ensure that the learned representations are linked to phenotype. We evaluate our framework on a schizophrenia dataset that includes two functional MRI paradigms and gene scores derived from Single Nucleotide Polymorphism data. Using repeated 10-fold cross-validation, we show that our imaging-genetics fusion achieves the better classification performance than state-of-the-art baselines. In an exploratory analysis, we further show that the biomarkers identified by our model are reproducible and closely associated with deficits in schizophrenia.

We investigate the challenge of modeling the belief state of a partially observable Markov system, given sample-access to its dynamics model. This problem setting is often approached using parametric sequential generative modeling methods. However, these methods do not leverage any additional computation at inference time to increase their accuracy. Moreover, applying these methods to belief state modeling in certain multi-agent settings would require passing policies into the belief model---at the time of writing, there have been no successful demonstrations of this. Toward addressing these shortcomings, we propose an inference-time improvement framework for parametric sequential generative modeling methods called belief fine-tuning (BFT). BFT leverages approximate dynamic programming in the form of fine-tuning to determine the model parameters at each time step. It can improve the accuracy of the belief model at test time because it specializes the model to the space of local observations. Furthermore, because this specialization occurs after the action or policy has already been decided, BFT does not require the belief model to process it as input. As a result of the latter point, BFT enables, for the first time, approximate public belief state search in imperfect-information games where the number of possible information states is too large …



Large language models (LMs) such as GPT-3 have the surprising ability to do in-context learning, where the model learns to do a downstream task simply by conditioning on a prompt consisting of input-output examples. The LM learns from these examples without being explicitly pretrained to learn. Thus, it is unclear what enables in-context learning. In this paper, we study how in-context learning can emerge when pretraining documents have long-range coherence. Here, the LM must infer a latent document-level concept to generate coherent next tokens during pretraining. At test time, in-context learning occurs when the LM also infers a shared latent concept between examples in a prompt. We prove when this occurs despite a distribution mismatch between prompts and pretraining data in a setting where the pretraining distribution is a mixture of HMMs. In contrast to messy large-scale datasets used to train LMs capable of in-context learning, we generate a small-scale synthetic dataset (GINC) where Transformers and LSTMs both exhibit in-context learning. Beyond the theory, experiments on GINC mirror real-world phenomena including improved in-context performance with model scaling, sensitivity to example order, and instances where zero-shot is better than few-shot in-context learning.


We study bandits and reinforcement learning (RL) subject to a conservative constraint where the agent is asked to perform at least as well as a given baseline policy. This setting is particular relevant in real-world domains including digital marketing, healthcare, production, finance, etc. In this paper, we present a reduction-based framework for conservative bandits and RL, in which our core technique is to calculate the necessary and sufficient budget obtained from running the baseline policy. For lower bounds, we improve the existing lower bound for conservative multi-armed bandits and obtain new lower bounds for conservative linear bandits, tabular RL and low-rank MDP, through a black-box reduction that turns a certain lower bound in the nonconservative setting into a new lower bound in the conservative setting. For upper bounds, in multi-armed bandits, linear bandits and tabular RL, our new upper bounds tighten or match existing ones with significantly simpler analyses. We also obtain a new upper bound for conservative low-rank MDP.

This paper studies Associate Learning (AL), an alternative methodology to the end-to-end backpropagation (BP). We introduce the workflow to convert a neural network into a proper structure such that AL can be used to learn the weights for various types of neural networks. We compared AL and BP on some of the most successful types of neural networks -- Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and Transformer. Experimental results show that AL consistently outperforms BP on various open datasets. We discuss possible reasons for AL's success and its limitations.

Online learning via Bayes' theorem allows new data to be continuously integrated into an agent's current beliefs. However, a naive application of Bayesian methods in non-stationary environments leads to slow adaptation and results in state estimates that may converge confidently to the wrong parameter value. A common solution when learning in changing environments is to discard/downweight past data; however, this simple mechanism of "forgetting" fails to account for the fact that many real-world environments involve revisiting similar states. We propose a new framework, Bayes with Adaptive Memory (BAM), that takes advantage of past experience by allowing the agent to choose which past observations to remember and which to forget. We demonstrate that BAM generalizes many popular Bayesian update rules for non-stationary environments. Through a variety of experiments, we demonstrate the ability of BAM to continuously adapt in an ever-changing world.


Meta-learning empowers artificial intelligence to increase its efficiency by learning how to learn. Unlocking this potential involves overcoming a challenging meta-optimisation problem. We propose an algorithm that tackles this problem by letting the meta-learner teach itself. The algorithm first bootstraps a target from the meta-learner, then optimises the meta-learner by minimising the distance to that target under a chosen (pseudo-)metric. Focusing on meta-learning with gradients, we establish conditions that guarantee performance improvements and show that metric can be used to control meta-optimisation. Meanwhile, the bootstrapping mechanism can extend the effective meta-learning horizon without requiring backpropagation through all updates. We achieve a new state-of-the art for model-free agents on the Atari ALE benchmark and demonstrate that it yields both performance and efficiency gains in multi-task meta-learning. Finally, we explore how bootstrapping opens up new possibilities and find that it can meta-learn efficient exploration in an epsilon-greedy Q-learning agent - without backpropagating through the update rule.


In Byzantine robust distributed or federated learning, a central server wants to train a machine learning model over data distributed across multiple workers. However, a fraction of these workers may deviate from the prescribed algorithm and send arbitrary messages. While this problem has received significant attention recently, most current defenses assume that the workers have identical data. For realistic cases when the data across workers are heterogeneous (non-iid), we design new attacks which circumvent current defenses, leading to significant loss of performance. We then propose a simple bucketing scheme that adapts existing robust algorithms to heterogeneous datasets at a negligible computational cost. We also theoretically and experimentally validate our approach, showing that combining bucketing with existing robust algorithms is effective against challenging attacks. Our work is the first to establish guaranteed convergence for the non-iid Byzantine robust problem under realistic assumptions.

Generative model based approaches have led to significant advances in zero-shot learning (ZSL) over the past few years. These approaches typically aim to learn a conditional generator that synthesizes training samples of classes conditioned on class definitions. The final zero-shot learning model is then obtained by training a supervised classification model over the real and/or synthesized training samples of seen and unseen classes, combined. Therefore, naturally, the generative model needs to produce not only relevant samples, but also those that are sufficiently rich for classifier training purposes, which is handled by various heuristics in existing works. In this paper, we introduce a principled approach for training generative models {\em directly} for training data generation purposes. Our main observation is that the use of closed-form models opens doors to end-to-end training thanks to the differentiability of the solvers. In our approach, at each generative model update step, we fit a task-specific closed-form ZSL model from generated samples, and measure its loss on novel samples all within the compute graph, a procedure that we refer to as {\em sample probing}. In this manner, the generator receives feedback directly based on the value of its samples for model training purposes. Our experimental results …

Objects' motions in nature are governed by complex interactions and their properties. While some properties, such as shape and material, can be identified via the object's visual appearances, others like mass and electric charge are not directly visible. The compositionality between the visible and hidden properties poses unique challenges for AI models to reason from the physical world, whereas humans can effortlessly infer them with limited observations. Existing studies on video reasoning mainly focus on visually observable elements such as object appearance, movement, and contact interaction. In this paper, we take an initial step to highlight the importance of inferring the hidden physical properties not directly observable from visual appearances, by introducing the Compositional Physical Reasoning (ComPhy) dataset. For a given set of objects, ComPhy includes few videos of them moving and interacting under different initial conditions. The model is evaluated based on its capability to unravel the compositional hidden properties, such as mass and charge, and use this knowledge to answer a set of questions posted on one of the videos. Evaluation results of several state-of-the-art video reasoning models on ComPhy show unsatisfactory performance as they fail to capture these hidden properties. We further propose an oracle neural-symbolic framework …

We present Reward-Switching Policy Optimization (RSPO), a paradigm to discover diverse strategies in complex RL environments by iteratively finding novel policies that are both locally optimal and sufficiently different from existing ones. To encourage the learning policy to consistently converge towards a previously undiscovered local optimum, RSPO switches between extrinsic and intrinsic rewards via a trajectory-based novelty measurement during the optimization process. When a sampled trajectory is sufficiently distinct, RSPO performs standard policy optimization with extrinsic rewards. For trajectories with high likelihood under existing policies, RSPO utilizes an intrinsic diversity reward to promote exploration. Experiments show that RSPO is able to discover a wide spectrum of strategies in a variety of domains, ranging from single-agent particle-world tasks and MuJoCocontinuous control to multi-agent stag-hunt games and StarCraftII challenges.

Recent advances in neural modeling have produced deep multilingual language models capable of extracting cross-lingual knowledge from non-parallel texts and enabling zero-shot downstream transfer. While their success is often attributed to shared representations, quantitative analyses are limited. Towards a better understanding, through empirical analyses, we show that the invariance of feature representations across languages—an effect of shared representations—strongly correlates with transfer performance. We also observe that distributional shifts in class priors between source and target language task data negatively affect performance, a largely overlooked issue that could cause negative transfer with existing unsupervised approaches. Based on these findings, we propose and evaluate a method for unsupervised transfer, called importance-weighted domain alignment (IWDA), that performs representation alignment with prior shift estimation and correction using unlabeled target language task data. Experiments demonstrate its superiority under large prior shifts, and show further performance gains when combined with existing semi-supervised learning techniques.

A highly desirable property of a reinforcement learning (RL) agent -- and a major difficulty for deep RL approaches -- is the ability to generalize policies learned on a few tasks over a high-dimensional observation space to similar tasks not seen during training. Many promising approaches to this challenge consider RL as a process of training two functions simultaneously: a complex nonlinear encoder that maps high-dimensional observations to a latent representation space, and a simple linear policy over this space. We posit that a superior encoder for zero-shot generalization in RL can be trained by using solely an auxiliary SSL objective if the training process encourages the encoder to map behaviorally similar observations to similar representations, as reward-based signal can cause overfitting in the encoder (Raileanu et al., 2021). We propose Cross-Trajectory Representation Learning (CTRL), a method that runs within an RL agent and conditions its encoder to recognize behavioral similarity in observations by applying a novel SSL objective to pairs of trajectories from the agent's policies. CTRL can be viewed as having the same effect as inducing a pseudo-bisimulation metric but, crucially, avoids the use of rewards and associated overfitting risks. Our experiments ablate various components of CTRL and …
We present a novel approach to use curricula to identify principles by which a system learns. Previous work in curriculum learning has focused on how curricula can be designed to improve learning of a model on particular tasks. We consider the inverse problem: what can a curriculum tell us about how a learning system acquired a task? Using recurrent neural networks (RNNs) and models of common experimental neuroscience tasks, we demonstrate that curricula can be used to differentiate learning principles using target-based and a representation-based loss functions as use cases. In particular, we compare the performance of RNNs using target-based learning rules versus those using representational learning rules on three different curricula in the context of two tasks. We show that the learned state-space trajectories of RNNs trained by these two learning rules under all curricula tested are indistinguishable. However, by comparing learning times during different curricula, we can disambiguate the learning rules and challenge traditional approaches of interrogating learning systems. Although all animals in neuroscience lab settings are trained by curriculum-based procedures called shaping, almost no behavioral or neural data are collected or published on the relative successes or training times under different curricula. Our results motivate the systematic …
To attain higher efficiency, the industry has gradually reformed towards application-specific hardware accelerators. While such a paradigm shift is already starting to show promising results, designers need to spend considerable manual effort and perform large number of time-consuming simulations to find accelerators that can accelerate multiple target applications while obeying design constraints. Moreover, such a simulation-driven approach must be re-run from scratch every time the set of target applications or design constraints change. An alternative paradigm is to use a data-driven, offline approach that utilizes logged simulation data, to architect hardware accelerators, without needing any form of simulations. Such an approach not only alleviates the need to run time-consuming simulation, but also enables data reuse and applies even when set of target applications changes. In this paper, we develop such a data-driven offline optimization method for designing hardware accelerators, dubbed PRIME, that enjoys all of these properties. Our approach learns a conservative, robust estimate of the desired cost function, utilizes infeasible points and optimizes the design against this estimate without any additional simulator queries during optimization. PRIME architects accelerators---tailored towards both single- and multi-applications---improving performance upon stat-of-the-art simulation-driven methods by about 1.54x and 1.20x, while considerably reducing the required total …

Traditional computer vision models are trained to predict a fixed set of predefined categories. Recently, natural language has been shown to be a broader and richer source of supervision that provides finer descriptions to visual concepts than supervised "gold" labels. Previous works, such as CLIP, use InfoNCE loss to train a model to predict the pairing between images and text captions. CLIP, however, is data hungry and requires more than 400M image-text pairs for training. The inefficiency can be \textit{partially} attributed to the fact that the image-text pairs are noisy. To address this, we propose OTTER (Optimal TransporT distillation for Efficient zero-shot Recognition), which uses online entropic optimal transport to find a soft image-text match as labels for contrastive learning. Based on pretrained image and text encoders, models trained with OTTER achieve strong performance with only 3M image text pairs. Compared with InfoNCE loss, label smoothing, and knowledge distillation, OTTER consistently outperforms these baselines in zero-shot evaluation on Google Open Images (19,958 classes) and multi-labeled ImageNet 10K (10032 classes) from Tencent ML-Images. Over 42 evaluations on 7 different dataset/architecture settings x 6 metrics, OTTER outperforms (32) or ties (2) all baselines in 34 of them. Our source code is open …

The structural design of functional molecules, also called molecular optimization, is an essential chemical science and engineering task with important applications, such as drug discovery. Deep generative models and combinatorial optimization methods achieve initial success but still struggle with directly modeling discrete chemical structures and often heavily rely on brute-force enumeration. The challenge comes from the discrete and non-differentiable nature of molecule structures. To address this, we propose differentiable scaffolding tree (DST) that utilizes a learned knowledge network to convert discrete chemical structures to locally differentiable ones. DST enables a gradient-based optimization on a chemical graph structure by back-propagating the derivatives from the target properties through a graph neural network (GNN). Our empirical studies show the gradient-based molecular optimizations are both effective and sample efficient (in terms of oracle calling number). Furthermore, the learned graph parameters can also provide an explanation that helps domain experts understand the model output. The code repository (including processed data, trained model, demonstration, molecules with the highest property) is available at https://github.com/futianfan/DST.

Vision Transformer (ViT) is emerging as the state-of-the-art architecture for image recognition. While recent studies suggest that ViTs are more robust than their convolutional counterparts, our experiments find that ViTs are overly reliant on local features (\eg, nuisances and texture) and fail to make adequate use of global context (\eg, shape and structure). As a result, ViTs fail to generalize to out-of-distribution, real-world data. To address this deficiency, we present a simple and effective architecture modification to ViT's input layer by adding discrete tokens produced by a vector-quantized encoder. Different from the standard continuous pixel tokens, discrete tokens are invariant under small perturbations and contain less information individually, which promote ViTs to learn global information that is invariant. Experimental results demonstrate that adding discrete representation on four architecture variants strengthens ViT robustness by up to 12\% across seven ImageNet robustness benchmarks while maintaining the performance on ImageNet.

Federated learning has been deployed to train machine learning models from decentralized client data on mobile devices in practice. The clients available for training are observed to have periodically shifting distributions changing with the time of day, which can cause instability in training and degrade the model performance. In this paper, instead of modeling the distribution shift with a block-cyclic pattern as previous works, we model it with a mixture of distributions that gradually shifts between daytime and nighttime modes, and find this intuitive model to better match the observations in practical federated learning systems. Furthermore, we propose to jointly train a clustering model and a multi-branch network to allocate lightweight specialized branches to clients from different modes. A temporal prior is used to significantly boost the training performance.Experiments for image classification on EMNIST and CIFAR datasets, and next word prediction on the Stack Overflow dataset show that the proposed algorithm can counter the effects of the distribution shift and significantly improve the final model performance.

We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyper-parameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.

A variety of methods exist to explain image classification models. However, whether they provide any benefit to users over simply comparing various inputs and the model’s respective predictions remains unclear. We conducted a user study (N=240) to test how such a baseline explanation technique performs against concept-based and counterfactual explanations. To this end, we contribute a synthetic dataset generator capable of biasing individual attributes and quantifying their relevance to the model. In a study, we assess if participants can identify the relevant set of attributes compared to the ground-truth. Our results show that the baseline outperformed concept-based explanations. Counterfactual explanations from an invertible neural network performed similarly as the baseline. Still, they allowed users to identify some attributes more accurately. Our results highlight the importance of measuring how well users can reason about biases of a model, rather than solely relying on technical evaluations or proxy tasks. We open-source our study and dataset so it can serve as a blue-print for future studies.

Fully exploiting the learning capacity of neural networks requires overparameterized dense networks. On the other side, directly training sparse neural networks typically results in unsatisfactory performance. Lottery Ticket Hypothesis (LTH) provides a novel view to investigate sparse network training and maintain its capacity. Concretely, it claims there exist winning tickets from a randomly initialized network found by iterative magnitude pruning and preserving promising trainability (or we say being in trainable condition). In this work, we regard the winning ticket from LTH as the subnetwork which is in trainable condition and its performance as our benchmark, then go from a complementary direction to articulate the Dual Lottery Ticket Hypothesis (DLTH): Randomly selected subnetworks from a randomly initialized dense network can be transformed into a trainable condition and achieve admirable performance compared with LTH --- random tickets in a given lottery pool can be transformed into winning tickets. Specifically, by using uniform-randomly selected subnetworks to represent the general cases, we propose a simple sparse network training strategy, Random Sparse Network Transformation (RST), to substantiate our DLTH. Concretely, we introduce a regularization term to borrow learning capacity and realize information extrusion from the weights which will be masked. After finishing the transformation for …

Recently numerous machine learning based methods for combinatorial optimization problems have been proposed that learn to construct solutions in a sequential decision process via reinforcement learning. While these methods can be easily combined with search strategies like sampling and beam search, it is not straightforward to integrate them into a high-level search procedure offering strong search guidance. Bello et al. (2016) propose active search, which adjusts the weights of a (trained) model with respect to a single instance at test time using reinforcement learning. While active search is simple to implement, it is not competitive with state-of-the-art methods because adjusting all model weights for each test instance is very time and memory intensive. Instead of updating all model weights, we propose and evaluate three efficient active search strategies that only update a subset of parameters during the search. The proposed methods offer a simple way to significantly improve the search performance of a given model and outperform state-of-the-art machine learning based methods on combinatorial problems, even surpassing the well-known heuristic solver LKH3 on the capacitated vehicle routing problem. Finally, we show that (efficient) active search enables learned models to effectively solve instances that are much larger than those seen during …

A fundamental characteristic of natural language is the high rate at which speakers produce novel expressions. Because of this novelty, a heavy-tail of rare events accounts for a significant amount of the total probability mass of distributions in language (Baayen, 2001). Standard language modeling metrics such as perplexity quantify the performance of language models (LM) in aggregate. As a result, we have relatively little understanding of whether neural LMs accurately estimate the probability of sequences in this heavy-tail of rare events. To address this gap, we develop a controlled evaluation scheme which uses generative models trained on natural data as artificial languages from which we can exactly compute sequence probabilities. Training LMs on generations from these artificial languages, we compare the sequence-level probability estimates given by LMs to the true probabilities in the target language. Our experiments reveal that LSTM and Transformer language models (i) systematically underestimate the probability of sequences drawn from the target language, and (ii) do so more severely for less-probable sequences. Investigating where this probability mass went, (iii) we find that LMs tend to overestimate the probability of ill formed (perturbed) sequences. In addition, we find that this underestimation behaviour (iv) is weakened, but not eliminated …

Characterizing the separation power of graph neural networks (GNNs) provides an understanding of their limitations for graph learning tasks. Results regarding separation power are, however, usually geared at specific GNNs architectures, and tools for understanding arbitrary GNN architectures are generally lacking. We provide an elegant way to easily obtain bounds on the separation power of GNNs in terms of the Weisfeiler-Leman (WL) tests, which have become the yardstick to measure the separation power of GNNs. The crux is to view GNNs as expressions in a procedural tensor language describing the computations in the layers of the GNNs. Then, by a simple analysis of the obtained expressions, in terms of the number of indexes used and the nesting depth of summations, bounds on the separation power in terms of the WL-tests readily follow. We use tensor language to define Higher-Order Message-Passing Neural Networks (or k-MPNNs), a natural extension of MPNNs. Furthermore, the tensor language point of view allows for the derivation of universality results for classes of GNNs in a natural way. Our approach provides a toolbox with which GNN architecture designers can analyze the separation power of their GNNs, without needing to know the intricacies of the WL-tests. We also …

Recent studies have demonstrated that using machine learning for social applications can lead to injustice in the form of racist, sexist, and otherwise unfair and discriminatory outcomes. To address this challenge, recent machine learning algorithms have been designed to limit the likelihood such unfair behaviors will occur. However, these approaches typically assume the data used for training is representative of what will be encountered once the model is deployed, thus limiting their usefulness. In particular, if certain subgroups of the population become more or less probable after the model is deployed (a phenomenon we call demographic shift), the fair-ness assurances provided by prior algorithms are often invalid. We consider the impact of demographic shift and present a class of algorithms, called Shifty algorithms, that provide high-confidence behavioral guarantees that hold under demographic shift. Shifty is the first technique of its kind and demonstrates an effective strategy for designing algorithms to overcome the challenges demographic shift poses. We evaluate Shifty-ttest, an implementation of Shifty based on Student’s 𝑡-test, and, using a real-world data set of university entrance exams and subsequent student success, show that the models output by our algorithm avoid unfair bias under demo-graphic shift, unlike existing methods. Our experiments …

Trained Neural Networks (NNs) can be viewed as data-dependent kernel machines, with predictions determined by the inner product of last-layer representations across inputs, referred to as the feature kernel. We explore the relevance of the feature kernel for Knowledge Distillation (KD), using a mechanistic understanding of an NN’s optimisation process. We extend the theoretical analysis of Allen-Zhu & Li (2020) to show that a trained NN’s feature kernel is highly dependent on its parameter initialisation, which biases different initialisations of the same architecture to learn different data attributes in a multi-view data setting. This enables us to prove that KD using only pairwise feature kernel comparisons can improve NN test accuracy in such settings, with both single & ensemble teacher models, whereas standard training without KD fails to generalise. We further use our theory to motivate practical considerations for improving student generalisation when using distillation with feature kernels, which allows us to propose a novel approach: Feature Kernel Distillation (FKD). Finally, we experimentally corroborate our theory in the image classification setting, showing that FKD is amenable to ensemble distillation, can transfer knowledge across datasets, and outperforms both vanilla KD & other feature kernel based KD baselines across a range of …

This paper explores a simple method for improving the zero-shot learning abilities of language models. We show that instruction tuning—finetuning language models on a collection of datasets described via instructions—substantially improves zero-shot performance on unseen tasks. We take a 137B parameter pretrained language model and instruction tune it on over 60 NLP datasets verbalized via natural language instruction templates. We evaluate this instruction-tuned model, which we call FLAN, on unseen task types. FLAN substantially improves the performance of its unmodified counterpart and surpasses zero-shot 175B GPT-3 on 20 of 25 datasets that we evaluate. FLAN even outperforms few-shot GPT-3 by a large margin on ANLI, RTE, BoolQ, AI2-ARC, OpenbookQA, and StoryCloze. Ablation studies reveal that number of finetuning datasets, model scale, and natural language instructions are key to the success of instruction tuning.


Embedding learning has found widespread applications in recommendation systems and natural language modeling, among other domains. To learn quality embeddings efficiently, adaptive learning rate algorithms have demonstrated superior empirical performance over SGD, largely accredited to their token-dependent learning rate. However, the underlying mechanism for the efficiency of token-dependent learning rate remains underexplored. We show that incorporating frequency information of tokens in the embedding learning problems leads to provably efficient algorithms, and demonstrate that common adaptive algorithms implicitly exploit the frequency information to a large extent. Specifically, we propose (Counter-based) Frequency-aware Stochastic Gradient Descent, which applies a frequency-dependent learning rate for each token, and exhibits provable speed-up compared to SGD when the token distribution is imbalanced. Empirically, we show the proposed algorithms are able to improve or match the performance of adaptive algorithms on benchmark recommendation tasks and a large-scale industrial recommendation system, closing the performance gap between SGD and adaptive algorithms. Our results are the first to show token-dependent learning rate provably improves convergence for non-convex embedding learning problems.

Many modern machine learning algorithms such as generative adversarial networks (GANs) and adversarial training can be formulated as minimax optimization.Gradient descent ascent (GDA) is the most commonly used algorithm due to its simplicity. However, GDA can converge to non-optimal minimax points. We propose a new minimax optimization framework,GDA-AM, that views the GDA dynamics as a fixed-point iteration and solves it using Anderson Mixing to converge to the local minimax. It addresses the diverging issue of simultaneous GDA and accelerates the convergence of alternating GDA. We show theoretically that the algorithm can achieve global convergence for bilinear problems under mildconditions. We also empirically show that GDA-AM solves a variety of minimax problems and improves GAN training on several datasets

The kernel thinning (KT) algorithm of Dwivedi and Mackey (2021) compresses a probability distribution more effectively than independent sampling by targeting a reproducing kernel Hilbert space (RKHS) and leveraging a less smooth square-root kernel. Here we provide four improvements. First, we show that KT applied directly to the target RKHS yields tighter, dimension-free guarantees for any kernel, any distribution, and any fixed function in the RKHS. Second, we show that, for analytic kernels like Gaussian, inverse multiquadric, and sinc, target KT admits maximum mean discrepancy (MMD) guarantees comparable to or better than those of square-root KT without making explicit use of a square-root kernel. Third, we prove that KT with a fractional power kernel yields better-than-Monte-Carlo MMD guarantees for non-smooth kernels, like Laplace and Matern, that do not have square-roots. Fourth, we establish that KT applied to a sum of the target and power kernels (a procedure we call KT+) simultaneously inherits the improved MMD guarantees of power KT and the tighter individual function guarantees of target KT. In our experiments with target KT and KT+, we witness significant improvements in integration error even in 100 dimensions and when compressing challenging differential equation posteriors.

The architecture and the parameters of neural networks are often optimized independently, which requires costly retraining of the parameters whenever the architecture is modified. In this work we instead focus on growing the architecture without requiring costly retraining. We present a method that adds new neurons during training without impacting what is already learned, while improving the training dynamics. We do this by maximizing the gradients of the new neurons and find an approximation to the optimal initialization by means of the singular value decomposition (SVD). We call this technique Gradient Maximizing Growth (GradMax) and demonstrate its effectiveness in variety of vision tasks and architectures.

A key challenge in neural architecture search (NAS) is quickly inferring the predictive performance of a broad spectrum of networks to discover statistically accurate and computationally efficient ones. We refer to this task as model performance inference (MPI). The current practice for efficient MPI is gradient-based methods that leverage the gradients of a network at initialization to infer its performance. However, existing gradient-based methods rely only on heuristic metrics and lack the necessary theoretical foundations to consolidate their designs. We propose GradSign, an accurate, simple, and flexible metric for model performance inference with theoretical insights. The key idea behind GradSign is a quantity Ψ to analyze the sample-wise optimization landscape of different networks. Theoretically, we show that Ψ is an upper bound for both the training and true population losses of a neural network under reasonable assumptions. However, it is computationally prohibitive to directly calculate Ψ for modern neural networks. Toaddress this challenge, we design GradSign, an accurate and simple approximation of Ψ using the gradients of a network evaluated at a random initialization state. Evaluation on seven NAS benchmarks across three training datasets shows that GradSign generalizes well to real-world networks and consistently outperforms state-of-the-art gradient-based methods for MPI …

When a dynamical system can be modeled as a sequence of observations, Granger causality is a powerful approach for detecting predictive interactions between its variables. However, traditional Granger causal inference has limited utility in domains where the dynamics need to be represented as directed acyclic graphs (DAGs) rather than as a linear sequence, such as with cell differentiation trajectories. Here, we present GrID-Net, a framework based on graph neural networks with lagged message passing for Granger causal inference on DAG-structured systems. Our motivating application is the analysis of single-cell multimodal data to identify genomic loci that mediate the regulation of specific genes. To our knowledge, GrID-Net is the first single-cell analysis tool that accounts for the temporal lag between a genomic locus becoming accessible and its downstream effect on a target gene's expression. We applied GrID-Net on multimodal single-cell assays that profile chromatin accessibility (ATAC-seq) and gene expression (RNA-seq) in the same cell and show that it dramatically outperforms existing methods for inferring regulatory locus-gene links, achieving up to 71% greater agreement with independent population genetics-based estimates. By extending Granger causality to DAG-structured dynamical systems, our work unlocks new domains for causal analyses and, more specifically, opens a path towards …

In many domains, including healthcare, biology, and climate science, time series are irregularly sampled with varying time intervals between successive readouts and different subsets of variables (sensors) observed at different time points. Here, we introduce RAINDROP, a graph neural network that embeds irregularly sampled and multivariate time series while also learning the dynamics of sensors purely from observational data. RAINDROP represents every sample as a separate sensor graph and models time-varying dependencies between sensors with a novel message passing operator. It estimates the latent sensor graph structure and leverages the structure together with nearby observations to predict misaligned readouts. This model can be interpreted as a graph neural network that sends messages over graphs that are optimized for capturing time-varying dependencies among sensors. We use RAINDROP to classify time series and interpret temporal dynamics on three healthcare and human activity datasets. RAINDROP outperforms state-of-the-art methods by up to 11.4% (absolute F1-score points), including techniques that deal with irregular sampling using fixed discretization and set functions. RAINDROP shows superiority in diverse setups, including challenging leave-sensor-out settings.

Solutions to the Traveling Salesperson Problem (TSP) have practical applications to processes in transportation, logistics, and automation, yet must be computed with minimal delay to satisfy the real-time nature of the underlying tasks. However, solving large TSP instances quickly without sacrificing solution quality remains challenging for current approximate algorithms. To close this gap, we present a hybrid data-driven approach for solving the TSP based on Graph Neural Networks (GNNs) and Guided Local Search (GLS). Our model predicts the regret of including each edge of the problem graph in the solution; GLS uses these predictions in conjunction with the original problem graph to find solutions. Our experiments demonstrate that this approach converges to optimal solutions at a faster rate than three recent learning based approaches for the TSP. Notably, we reduce the mean optimality gap on the 100-node problem set from 1.534% to 0.705%, a 2x improvement. When generalizing from 20-node instances to the 100-node problem set, we reduce the optimality gap from 18.845% to 2.622%, a 7x improvement.


Transformer-based autoregressive (AR) machine translation models have achieved significant performance improvements, nearing human-level accuracy on some languages. The AR framework translates one token at a time which can be time consuming, especially for long sequences. To accelerate inference, recent work has been exploring non-autoregressive (NAR) approaches that translate blocks of tokens in parallel. Despite significant progress, leading NAR models still lag behind their AR counterparts, and only become competitive when trained with distillation. In this paper we investigate possible reasons behind this performance gap, namely, the indistinguishability of tokens, and mismatch between training and inference. We then propose the Conditional Masked Language Model with Correction (CMLMC) that addresses these problems. Empirically, we show that CMLMC achieves state-of-the-art NAR performance when trained on raw data without distillation and approaches AR performance on multiple datasets. Full code for this work will be released at the time of publication.

Protein complex formation is a central problem in biology, being involved in most of the cell's processes, and essential for applications, e.g. drug design or protein engineering. We tackle rigid body protein-protein docking, i.e., computationally predicting the 3D structure of a protein-protein complex from the individual unbound structures, assuming no conformational change within the proteins happens during binding. We design a novel pairwise-independent SE(3)-equivariant graph matching network to predict the rotation and translation to place one of the proteins at the right docked position relative to the second protein. We mathematically guarantee a basic principle: the predicted complex is always identical regardless of the initial locations and orientations of the two structures. Our model, named EquiDock, approximates the binding pockets and predicts the docking poses using keypoint matching and alignment, achieved through optimal transport and a differentiable Kabsch algorithm. Empirically, we achieve significant running time improvements and often outperform existing docking software despite not relying on heavy candidate sampling, structure refinement, or templates.

Importance weighting is a classic technique to handle distribution shifts. However, prior work has presented strong empirical and theoretical evidence demonstrating that importance weights can have little to no effect on overparameterized neural networks. \emph{Is importance weighting truly incompatible with the training of overparameterized neural networks?} Our paper answers this in the negative. We show that importance weighting fails not because of the overparameterization, but instead, as a result of using exponentially-tailed losses like the logistic or cross-entropy loss. As a remedy, we show that polynomially-tailed losses restore the effects of importance reweighting in correcting distribution shift in overparameterized models. We characterize the behavior of gradient descent on importance weighted polynomially-tailed losses with overparameterized linear models, and theoretically demonstrate the advantage of using polynomially-tailed losses in a label shift setting. Surprisingly, our theory shows that using weights that are obtained by exponentiating the classical unbiased importance weights can improve performance. Finally, we demonstrate the practical value of our analysis with neural network experiments on a subpopulation shift and a label shift dataset. When reweighted, our loss function can outperform reweighted cross-entropy by as much as 9\% in test accuracy. Our loss function also gives test accuracies comparable to, or even …

Robust multi-agent trajectory prediction is essential for the safe control of robotic systems. A major challenge is to efficiently learn a representation that approximates the true joint distribution of contextual, social, and temporal information to enable planning. We propose Latent Variable Sequential Set Transformers which are encoder-decoder architectures that generate scene-consistent multi-agent trajectories. We refer to these architectures as “AutoBots”. The encoder is a stack of interleaved temporal and social multi-head self-attention (MHSA) modules which alternately perform equivariant processing across the temporal and social dimensions. The decoder employs learnable seed parameters in combination with temporal and social MHSA modules allowing it to perform inference over theentire future scene in a single forward pass efficiently. AutoBots can produce either the trajectory of one ego-agent or a distribution over the future trajectories for all agents in the scene. For the single-agent prediction case, our model achieves top results on the global nuScenes vehicle motion prediction leaderboard, and produces strong results on the Argoverse vehicle prediction challenge. In the multi-agent setting, we evaluate on the synthetic partition of TrajNet++ dataset to showcase the model’s socially-consistent predictions. We also demonstrate our model on general sequences of sets and provide illustrative experiments modelling the sequential …

Molecular chirality, a form of stereochemistry most often describing relative spatial arrangements of bonded neighbors around tetrahedral carbon centers, influences the set of 3D conformers accessible to the molecule without changing its 2D graph connectivity. Chirality can strongly alter (bio)chemical interactions, particularly protein-drug binding. Most 2D graph neural networks (GNNs) designed for molecular property prediction at best use atomic labels to naïvely treat chirality, while E(3)-invariant 3D GNNs are invariant to chirality altogether. To enable representation learning on molecules with defined stereochemistry, we design an SE(3)-invariant model that processes torsion angles of a 3D molecular conformer. We explicitly model conformational flexibility by integrating a novel type of invariance to rotations about internal molecular bonds into the architecture, mitigating the need for multi-conformer data augmentation. We test our model on four benchmarks: contrastive learning to distinguish conformers of different stereoisomers in a learned latent space, classification of chiral centers as R/S, prediction of how enantiomers rotate circularly polarized light, and ranking enantiomers by their docking scores in an enantiosensitive protein pocket. We compare our model, Chiral InterRoto-Invariant Neural Network (ChIRo), with 2D and 3D GNNs to demonstrate that our model achieves state of the art performance when learning chiral-sensitive functions from …


This paper tackles the problem of learning value functions from undirected state-only experience (state transitions without action labels i.e. (s,s',r) tuples). We first theoretically characterize the applicability of Q-learning in this setting. We show that tabular Q-learning in discrete Markov decision processes (MDPs) learns the same value function under any arbitrary refinement of the action space. This theoretical result motivates the design of Latent Action Q-learning or LAQ, an offline RL method that can learn effective value functions from state-only experience. Latent Action Q-learning (LAQ) learns value functions using Q-learning on discrete latent actions obtained through a latent-variable future prediction model. We show that LAQ can recover value functions that have high correlation with value functions learned using ground truth actions. Value functions learned using LAQ lead to sample efficient acquisition of goal-directed behavior, can be used with domain-specific low-level controllers, and facilitate transfer across embodiments. Our experiments in 5 environments ranging from 2D grid world to 3D visual navigation in realistic environments demonstrate the benefits of LAQ over simpler alternatives, imitation learning oracles, and competing methods.


Schrödinger Bridge (SB) is an entropy-regularized optimal transport problem that has received increasing attention in deep generative modeling for its mathematical flexibility compared to the Scored-based Generative Model (SGM). However, it remains unclear whether the optimization principle of SB relates to the modern training of deep generative models, which often rely on constructing log-likelihood objectives.This raises questions on the suitability of SB models as a principled alternative for generative applications. In this work, we present a novel computational framework for likelihood training of SB models grounded on Forward-Backward Stochastic Differential Equations Theory – a mathematical methodology appeared in stochastic optimal control that transforms the optimality condition of SB into a set of SDEs. Crucially, these SDEs can be used to construct the likelihood objectives for SB that, surprisingly, generalizes the ones for SGM as special cases. This leads to a new optimization principle that inherits the same SB optimality yet without losing applications of modern generative training techniques, and we show that the resulting training algorithm achieves comparable results on generating realistic images on MNIST, CelebA, and CIFAR10. Our code is available at https://github.com/ghliu/SB-FBSDE.

We study an extension of lossy compression where the reconstruction distribution is different from the source distribution in order to account for distributional shift due to processing. We formulate this as a generalization of optimal transport with an entropy bottleneck to account for the rate constraint due to compression. We provide expressions for the tradeoff between compression rate and the achievable distortion with and without shared common randomness between the encoder and decoder. We study the examples of binary, uniform and Gaussian sources (in an asymptotic setting) in detail and demonstrate that shared randomness can strictly improve the tradeoff. For the case without common randomness and squared-Euclidean distortion, we show that the optimal solution partially decouples into the problem of optimal compression and transport and also characterize the penalty associated with fully decoupling them. We provide experimental results by training deep learning end-to-end compression systems for performing denoising on SVHN and super-resolution on MNIST suggesting consistency with our theoretical results.

Humans are expert explorers and foragers. Understanding the computational cognitive mechanisms that support this capability can advance the study of the human mind and enable more efficient exploration algorithms. We hypothesize that humans explore new environments by inferring the structure of unobserved spaces through re-use of spatial information collected from previously explored spaces. Taking inspiration from the neuroscience of repeating map fragments and ideas about program induction, we present a novel ``Map Induction'' framework, which involves the generation of novel map proposals for unseen environments based on compositions of already-seen spaces in a Hierarchical Bayesian framework. The model thus explicitly reasons about unseen spaces through a distribution of strong spatial priors. We introduce a new behavioral Map Induction Task (MIT) that involves foraging for rewards to compare human performance with state-of-the-art existing models and Map Induction. We show that Map Induction better predicts human behavior than the non-inductive baselines. We also show that Map Induction, when used to augment state-of-the-art approximate planning algorithms, improves their performance.

Meta-learning enables algorithms to quickly learn a newly encountered task with just a few labeled examples by transferring previously learned knowledge. However, the bottleneck of current meta-learning algorithms is the requirement of a large number of meta-training tasks, which may not be accessible in real-world scenarios. To address the challenge that available tasks may not densely sample the space of tasks, we propose to augment the task set through interpolation. By meta-learning with task interpolation (MLTI), our approach effectively generates additional tasks by randomly sampling a pair of tasks and interpolating the corresponding features and labels. Under both gradient-based and metric-based meta-learning settings, our theoretical analysis shows MLTI corresponds to a data-adaptive meta-regularization and further improves the generalization. Empirically, in our experiments on eight datasets from diverse domains including image recognition, pose prediction, molecule property prediction, and medical image classification, we find that the proposed general MLTI framework is compatible with representative meta-learning algorithms and consistently outperforms other state-of-the-art strategies.

Multiple domains like vision, natural language, and audio are witnessing tremendous progress by leveraging Transformers for large scale pre-training followed by task specific fine tuning. In contrast, in robotics we primarily train a single robot for a single task. However, modular robot systems now allow for the flexible combination of general-purpose building blocks into task optimized morphologies. However, given the exponentially large number of possible robot morphologies, training a controller for each new design is impractical. In this work, we propose MetaMorph, a Transformer based approach to learn a universal controller over a modular robot design space. MetaMorph is based on the insight that robot morphology is just another modality on which we can condition the output of a Transformer. Through extensive experiments we demonstrate that large scale pre-training on a variety of robot morphologies results in policies with combinatorial generalization capabilities, including zero shot generalization to unseen robot morphologies. We further demonstrate that our pre-trained policy can be used for sample-efficient transfer to completely new robot morphologies and tasks.

Arguably the most fundamental question in the theory of generative adversarial networks (GANs) is to understand when GANs can actually learn the underlying distribution. Theoretical and empirical evidence (see e.g. Arora-Risteski-Zhang '18) suggest local optimality of the empirical training objective is insufficient, yet it does not rule out the possibility that achieving a true population minimax optimal solution might imply distribution learning. In this paper, we show that standard cryptographic assumptions imply that this stronger condition is still insufficient. Namely, we show that if local pseudorandom generators (PRGs) exist, then for a large family of natural target distributions, there are ReLU network generators of constant depth and poly size which take Gaussian random seeds so that (i) the output is far in Wasserstein distance from the target distribution, but (ii) no polynomially large Lipschitz discriminator ReLU network can detect this. This implies that even achieving a population minimax optimal solution to the Wasserstein GAN objective is likely insufficient for distribution learning. Our techniques reveal a deep connection between GANs and PRGs, which we believe will lead to further insights into the computational landscape of GANs.

Multi-label classification is a challenging structured prediction task in which a set of output class labels are predicted for each input. Real-world datasets often have natural or latent taxonomic relationships between labels, making it desirable for models to employ label representations capable of capturing such taxonomies. Most existing multi-label classification methods do not do so, resulting in label predictions that are inconsistent with the taxonomic constraints, thus failing to accurately represent the fundamentals of problem setting. In this work, we introduce the multi-label box model (MBM), a multi-label classification method that combines the encoding power of neural networks with the inductive bias and probabilistic semantics of box embeddings (Vilnis, et al 2018). Box embeddings can be understood as trainable Venn-diagrams based on hyper-rectangles. Representing labels by boxes rather than vectors, MBM is able to capture taxonomic relations among labels. Furthermore, since box embeddings allow these relations to be learned by stochastic gradient descent from data, and to be read as calibrated conditional probabilities, our model is endowed with a high degree of interpretability. This interpretability also facilitates the injection of partial information about label-label relationships into model training, to further improve its consistency. We provide theoretical grounding for our method …

Large language models have recently been shown to attain reasonable zero-shot generalization on a diverse set of tasks (Brown et al., 2020). It has been hypothesized that this is a consequence of implicit multitask learning in language models’ pretraining (Radford et al., 2019). Can zero-shot generalization instead be directly induced by explicit multitask learning? To test this question at scale, we develop a system for easily mapping any natural language tasks into a human-readable prompted form. We convert a large set of supervised datasets, each with multiple prompts with diverse wording. These prompted datasets allow for benchmarking the ability of a model to perform completely unseen tasks specified in natural language. We fine-tune a pretrained encoder-decoder model (Raffel et al., 2020; Lester et al., 2021) on this multitask mixture covering a wide variety of tasks. The model attains strong zero-shot performance on several datasets, often outperforming models 16× its size. Further, our model attains strong performance on a subset of tasks from the BIG-Bench benchmark, outperforming models 6× its size. All trained models are available at https://github.com/bigscience-workshop/t-zero, and all prompts are available at https://github.com/bigscience-workshop/promptsource.

Recent research has shown the existence of significant redundancy in large Transformer models. One can prune the redundant parameters without significantly sacrificing the generalization performance. However, we question whether the redundant parameters could have contributed more if they were properly trained. To answer this question, we propose a novel training strategy that encourages all parameters to be trained sufficiently. Specifically, we adaptively adjust the learning rate for each parameter according to its sensitivity, a robust gradient-based measure reflecting this parameter's contribution to the model performance. A parameter with low sensitivity is redundant, and we improve its fitting by increasing its learning rate. In contrast, a parameter with high sensitivity is well-trained, and we regularize it by decreasing its learning rate to prevent further overfitting. We conduct extensive experiments on natural language understanding, neural machine translation, and image classification to demonstrate the effectiveness of the proposed schedule. Analysis shows that the proposed schedule indeed reduces the redundancy and improves generalization performance.

We propose a framework to continuously learn object-centric representations for visual learning and understanding. Existing object-centric representations either rely on supervisions that individualize objects in the scene, or perform unsupervised disentanglement that can hardly deal with complex scenes in the real world. To mitigate the annotation burden and relax the constraints on the statistical complexity of the data, our method leverages interactions to effectively sample diverse variations of an object and the corresponding training signals while learning the object-centric representations. Throughout learning, objects are streamed one by one in random order with unknown identities, and are associated with latent codes that can synthesize discriminative weights for each object through a convolutional hypernetwork. Moreover, re-identification of learned objects and forgetting prevention are employed to make the learning process efficient and robust. We perform an extensive study of the key features of the proposed framework and analyze the characteristics of the learned representations. Furthermore, we demonstrate the capability of the proposed framework in learning representations that can improve label efficiency in downstream tasks. Our code and trained models are made publicly available at: https://github.com/pptrick/Object-Pursuit.

Reward-free, unsupervised discovery of skills is an attractive alternative to the bottleneck of hand-designing rewards in environments where task supervision is scarce or expensive. However, current skill pre-training methods, like many RL techniques, make a fundamental assumption -- stationary environments during training. Traditional methods learn all their skills simultaneously, which makes it difficult for them to both quickly adapt to changes in the environment, and to not forget earlier skills after such adaptation. On the other hand, in an evolving or expanding environment, skill learning must be able to adapt fast to new environment situations while not forgetting previously learned skills. These two conditions make it difficult for classic skill discovery to do well in an evolving environment. In this work, we propose a new framework for skill discovery, where skills are learned one after another in an incremental fashion. This framework allows newly learned skills to adapt to new environment or agent dynamics, while the fixed old skills ensure the agent doesn't forget a learned skill. We demonstrate experimentally that in both evolving and static environments, incremental skills significantly outperform current state-of-the-art skill discovery methods on both skill quality and the ability to solve downstream tasks. Videos for learned …



We study the ability of foundation models to learn representations for classification that are transferable to new, unseen classes. Recent results in the literature show that representations learned by a single classifier over many classes are competitive on few-shot learning problems with representations learned by special-purpose algorithms designed for such problems. In this paper, we provide an explanation for this behavior based on the recently observed phenomenon that the features learned by overparameterized classification networks show an interesting clustering property, called neural collapse. We demonstrate both theoretically and empirically that neural collapse generalizes to new samples from the training classes, and -- more importantly -- to new classes as well, allowing foundation models to provide feature maps that work well in transfer learning and, specifically, in the few-shot setting.

In this paper, we argue that energy-based sequence models backed by expressive parametric families can result in uncomputable and inapproximable partition functions. Among other things, this makes model selection--and therefore learning model parameters--not only difficult, but generally undecidable. The reason is that there are no good deterministic or randomized estimates of partition functions. Specifically, we exhibit a pathological example where under common assumptions, no useful importance sampling estimates of the partition function can guarantee to have variance bounded below a rational number. As alternatives, we consider sequence model families whose partition functions are computable (if they exist), but at the cost of reduced expressiveness. Our theoretical results suggest that statistical procedures with asymptotic guarantees and sheer (but finite) amounts of compute are not the only things that make sequence modeling work; computability concerns must not be neglected as we consider more expressive model parametrizations.

The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of the maximum softmax probability OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve state-of-the-art on a number of OSR benchmarks. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but the resulting discrepancy with the strong baseline is marginal. Our third contribution is to present the 'Semantic Shift Benchmark' (SSB), which better respects the task of detecting semantic novelty, as opposed to low-level distributional shifts as tackled by neighbouring machine learning fields. On this new evaluation, we again …

Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the factual information extracted from Large Language Models (LLMs) depends on the prompts used to query them. This inconsistency is problematic because different users will query LLMs for the same information using different wording, but should receive the same, accurate responses regardless. In this work we aim to address this shortcoming by introducing P-Adapters: lightweight models that sit between the embedding layer and first attention layer of LLMs. They take LLM embeddings as input and output continuous prompts that are used to query the LLM. Additionally, we investigate Mixture of Experts (MoE) models that learn a set of continuous prompts (the "experts") and select one to query the LLM. These require a separate classifier trained on human-annotated data to map natural language prompts to the continuous ones. P-Adapters perform comparably to the more complex MoE models in extracting factual information from BERT and RoBERTa while eliminating the need for additional annotations. P-Adapters show between 12-26% absolute improvement in precision and 36-50% absolute improvement in consistency over a baseline of just using natural language queries alone. Finally, we investigate what makes P-Adapters successful and conclude that a …

Emphatic temporal difference (ETD) learning (Sutton et al., 2016) is a successful method to conduct the off-policy value function evaluation with function approximation. Although ETD has been shown to converge asymptotically to a desirable value function, it is well-known that ETD often encounters a large variance so that its sample complexity can increase exponentially fast with the number of iterations. In this work, we propose a new ETD method, called PER-ETD (i.e., PEriodically Restarted-ETD), which restarts and updates the follow-on trace only for a finite period for each iteration of the evaluation parameter. Further, PER-ETD features a design of the logarithmical increase of the restart period with the number of iterations, which guarantees the best trade-off between the variance and bias and keeps both vanishing sublinearly. We show that PER-ETD converges to the same desirable fixed point as ETD, but improves the exponential sample complexity of ETD to be polynomials. Our experiments validate the superior performance of PER-ETD and its advantage over ETD.

A recent line of ground-breaking results for permutation-based SGD has corroborated a widely observed phenomenon: random permutations offer faster convergence than with-replacement sampling. However, is random optimal? We show that this depends heavily on what functions we are optimizing, and the convergence gap between optimal and random permutations can vary from exponential to nonexistent. We first show that for 1-dimensional strongly convex functions, with smooth second derivatives, there exist optimal permutations that offer exponentially faster convergence compared to random. However, for general strongly convex functions, random permutations are optimal. Finally, we show that for quadratic, strongly-convex functions, there are easy-to-construct permutations that lead to accelerated convergence compared to random. Our results suggest that a general convergence characterization of optimal permutations cannot capture the nuances of individual function classes, and can mistakenly indicate that one cannot do much better than random.

We propose a novel prediction interval (PI) method for uncertainty quantification, which addresses three major issues with the state-of-the-art PI methods. First, existing PI methods require retraining of neural networks (NNs) for every given confidence level and suffer from the crossing issue in calculating multiple PIs. Second, they usually rely on customized loss functions with extra sensitive hyperparameters for which fine tuning is required to achieve a well-calibrated PI. Third, they usually underestimate uncertainties of out-of-distribution (OOD) samples leading to over-confident PIs. Our PI3NN method calculates PIs from linear combinations of three NNs, each of which is independently trained using the standard mean squared error loss. The coefficients of the linear combinations are computed using root-finding algorithms to ensure tight PIs for a given confidence level. We theoretically prove that PI3NN can calculate PIs for a series of confidence levels without retraining NNs and it completely avoids the crossing issue. Additionally, PI3NN does not introduce any unusual hyperparameters resulting in a stable performance. Furthermore, we address OOD identification challenge by introducing an initialization scheme which provides reasonably larger PIs of the OOD samples than those of the in-distribution samples. Benchmark and real-world experiments show that our method outperforms several state-of-the-art …

Model-based reinforcement learning has proven highly successful. However, learning a model in isolation from its use during planning is problematic in complex environments. To date, the most effective techniques have instead combined value-equivalent model learning with powerful tree-search methods. This approach is exemplified by MuZero, which has achieved state-of-the-art performance in a wide range of domains, from board games to visually rich environments, with discrete and continuous action spaces, in online and offline settings. However, previous instantiations of this approach were limited to the use of deterministic models. This limits their performance in environments that are inherently stochastic, partially observed, or so large and complex that they appear stochastic to a finite agent. In this paper we extend this approach to learn and plan with stochastic models. Specifically, we introduce a new algorithm, Stochastic MuZero, that learns a stochastic model incorporating afterstates, and uses this model to perform a stochastic tree search. Stochastic MuZero matched or exceeded the state of the art in a set of canonical single and multi-agent environments, including 2048 and backgammon, while maintaining the same performance as standard MuZero in the game of Go.

Building models of human decision-making from observed behaviour is critical to better understand, diagnose and support real-world policies such as clinical care. As established policy learning approaches remain focused on imitation performance, they fall short of explaining the demonstrated decision-making process. Policy Extraction through decision Trees (POETREE) is a novel framework for interpretable policy learning, compatible with fully-offline and partially-observable clinical decision environments -- and builds probabilistic tree policies determining physician actions based on patients' observations and medical history. Fully-differentiable tree architectures are grown incrementally during optimization to adapt their complexity to the modelling task, and learn a representation of patient history through recurrence, resulting in decision tree policies that adapt over time with patient information. This policy learning method outperforms the state-of-the-art on real and synthetic medical datasets, both in terms of understanding, quantifying and evaluating observed behaviour as well as in accurately replicating it -- with potential to improve future decision support systems.

Reasoning about the future -- understanding how decisions in the present time affect outcomes in the future -- is one of the central challenges for reinforcement learning (RL), especially in highly-stochastic or partially observable environments. While predicting the future directly is hard, in this work we introduce a method that allows an agent to ``look into the future'' without explicitly predicting it. Namely, we propose to allow an agent, during its training on past experience, to observe what \emph{actually} happened in the future at that time, while enforcing an information bottleneck to avoid the agent overly relying on this privileged information. Coupled with recent advances in variational inference and a latent-variable autoregressive model, this gives our agent the ability to utilize rich and \emph{useful} information about the future trajectory dynamics in addition to the present. Our method, Policy Gradients Incorporating the Future (PGIF), is easy to implement and versatile, being applicable to virtually any policy gradient algorithm. We apply our proposed method to a number of off-the-shelf RL algorithms and show that PGIF is able to achieve higher reward faster in a variety of online and offline RL domains, as well as sparse-reward and partially observable environments.


Auto-regressive sequence models for physics prediction are often restricted to low-dimensional systems, as memory cost increases with both spatial extents and sequence length. On the other hand, graph-based next-step prediction models have recently been very successful in modeling complex high-dimensional physical systems on irregular meshes, but suffer from error accumulation and drift, due to their short temporal attention span. In this paper, we present a method that marries the strengths of both approaches. We use a GNN to locally summarize features and create coarsened, compact mesh representation of the system state, onto which we apply a transformer-style temporal attention module. We use a second GNN to decode these predictions back to a full-sized graph and perform fine-scale updates. Our method outperforms a competitive GNN baseline on three complex fluid dynamics prediction tasks, from sonic shocks to vascular flow. We demonstrate stable rollouts without the need for training noise and show perfectly phase-stable predictions even for very long sequences. More broadly, we believe our approach paves the way to bringing the benefits of attention-based sequence models to solving high-dimensional complex physics tasks.

We present a new framework AMOS that pretrains text encoders with an Adversarial learning curriculum via a Mixture Of Signals from multiple auxiliary generators. Following ELECTRA-style pretraining, the main encoder is trained as a discriminator to detect replaced tokens generated by auxiliary masked language models (MLMs). Different from ELECTRA which trains one MLM as the generator, we jointly train multiple MLMs of different sizes to provide training signals at various levels of difficulty. To push the discriminator to learn better with challenging replaced tokens, we learn mixture weights over the auxiliary MLMs' outputs to maximize the discriminator loss by backpropagating the gradient from the discriminator via Gumbel-Softmax. For better pretraining efficiency, we propose a way to assemble multiple MLMs into one unified auxiliary model. AMOS outperforms ELECTRA and recent state-of-the-art pretrained models by about 1 point on the GLUE benchmark for BERT base-sized models.

Growing interests in RGB-D salient object detection (RGB-D SOD) have been witnessed in recent years, owing partly to the popularity of depth sensors and the rapid progress of deep learning techniques. Unfortunately, existing RGB-D SOD methods typically demand large quantity of training images being thoroughly annotated at pixel-level. The laborious and time-consuming manual annotation has become a real bottleneck in various practical scenarios. On the other hand, current unsupervised RGB-D SOD methods still heavily rely on handcrafted feature representations. This inspires us to propose in this paper a deep unsupervised RGB-D saliency detection approach, which requires no manual pixel-level annotation during training. It is realized by two key ingredients in our training pipeline. First, a depth-disentangled saliency update (DSU) framework is designed to automatically produce pseudo-labels with iterative follow-up refinements, which provides more trustworthy supervision signals for training the saliency network. Second, an attentive training strategy is introduced to tackle the issue of noisy pseudo-labels, by properly re-weighting to highlight the more reliable pseudo-labels. Extensive experiments demonstrate the superior efficiency and effectiveness of our approach in tackling the challenging unsupervised RGB-D SOD scenarios. Moreover, our approach can also be adapted to work in fully-supervised situation. Empirical studies show the incorporation …

Our work focuses on the development of a learnable neural representation of human pose for advanced AI assisted animation tooling. Specifically, we tackle the problem of constructing a full static human pose based on sparse and variable user inputs (e.g. locations and/or orientations of a subset of body joints). To solve this problem, we propose a novel neural architecture that combines residual connections with prototype encoding of a partially specified pose to create a new complete pose from the learned latent space. We show that our architecture outperforms a baseline based on Transformer, both in terms of accuracy and computational efficiency. Additionally, we develop a user interface to integrate our neural model in Unity, a real-time 3D development platform. Furthermore, we introduce two new datasets representing the static human pose modeling problem, based on high-quality human motion capture data, which will be released publicly along with model code.

Recent discoveries indicate that the neural codes in the primary visual cortex (V1) of macaque monkeys are complex, diverse and sparse. This leads us to ponder the computational advantages and functional role of these “grandmother cells." Here, we propose that such cells can serve as prototype memory priors that bias and shape the distributed feature processing within the image generation process in the brain. These memory prototypes are learned by momentum online clustering and are utilized via a memory-based attention operation, which we define as Memory Concept Attention (MoCA). To test our proposal, we show in a few-shot image generation task, that having a prototype memory during attention can improve image synthesis quality, learn interpretable visual concept clusters, as well as improve the robustness of the model. Interestingly, we also find that our attentional memory mechanism can implicitly modify the horizontal connections by updating the transformation into the prototype embedding space for self-attention. Insofar as GANs can be seen as plausible models for reasoning about the top-down synthesis in the analysis-by-synthesis loop of the hierarchical visual cortex, our findings demonstrate a plausible computational role for these “prototype concept" neurons in visual processing in the brain.

This paper studies zero-shot domain adaptation where each domain is indexed on a multi-dimensional array, and we only have data from a small subset of domains. Our goal is to produce predictors that perform well on \emph{unseen} domains. We propose a model which consists of a domain-invariant latent representation layer and a domain-specific linear prediction layer with a low-rank tensor structure. Theoretically, we present explicit sample complexity bounds to characterize the prediction error on unseen domains in terms of the number of domains with training data and the number of data per domain. To our knowledge, this is the first finite-sample guarantee for zero-shot domain adaptation. In addition, we provide experiments on two-way MNIST and four-way fiber sensing datasets to demonstrate the effectiveness of our proposed model.
In this paper, we study the problem of finding mixed Nash equilibrium for mean-field two-player zero-sum games. Solving this problem requires optimizing over two probability distributions. We consider a quasistatic Wasserstein gradient flow dynamics in which one probability distribution follows the Wasserstein gradient flow, while the other one is always at the equilibrium. Theoretical analysis are conducted on this dynamics, showing its convergence to the mixed Nash equilibrium under mild conditions. Inspired by the continuous dynamics of probability distributions, we derive a quasistatic Langevin gradient descent method with inner-outer iterations, and test the method on different problems, including training mixture of GANs.


Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors, using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference and the performance saturates over the past few years. In this paper, we present an ovel perspective on this task. We find detailed local geometrical informationprobably is not the key to point cloud analysis – we introduce a pure residual MLP network, called PointMLP, which integrates no local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric-affine module to stabilize the training, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize PointMLP achieves this strong performance without any sophisticated operations, hence leading to a prominent inference speed. Compared to most recent CurveNet, PointMLP trains 2× faster, tests 7× faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.

Deep generative models have been widely used in practical applications such as the detection of out-of-distribution (OOD) data. In this work, we aim to re-examine the potential of generative flow models in OOD detection. We first propose a simple combination of univariate one-sample statistical test (e.g., Kolmogorov-Smirnov) and random projections in the latent space of flow models to perform OOD detection. Then, we propose a two-sample version of our test to account for imperfect flow models. Quite distinctly, our method does not pose parametric assumptions on OOD data and is capable of exploiting any flow model. Experimentally, firstly we confirm the efficacy of our method against state-of-the-art baselines through extensive experiments on several image datasets; secondly we investigate the relationship between model accuracy (e.g., the generation quality) and the OOD detection performance, and found surprisingly that they are not always positively correlated; and thirdly we show that detection in the latent space of flow models generally outperforms detection in the sample space across various OOD datasets, hence highlighting the benefits of training a flow model.

This work considers identifying parameters characterizing a physical system's dynamic motion directly from a video whose rendering configurations are inaccessible. Existing solutions require massive training data or lack generalizability to unknown rendering configurations. We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem. Our core idea is to train a rendering-invariant state-prediction (RISP) network that transforms image differences into state differences independent of rendering configurations, e.g., lighting, shadows, or material reflectance. To train this predictor, we formulate a new loss on rendering variances using gradients from differentiable rendering. Moreover, we present an efficient, second-order method to compute the gradients of this loss, allowing it to be integrated seamlessly into modern deep learning frameworks. We evaluate our method in rigid-body and deformable-body simulation environments using four tasks: state estimation, system identification, imitation learning, and visuomotor control. We further demonstrate the efficacy of our approach on a real-world example: inferring the state and action sequences of a quadrotor from a video of its motion sequences. Compared with existing methods, our approach achieves significantly lower reconstruction errors and has better generalizability among unknown rendering configurations.

We present an empirical study of scaling properties of encoder-decoder Transformer models used in neural machine translation (NMT). We show that cross-entropy loss as a function of model size follows a certain scaling law. Specifically (i) We propose a formula which describes the scaling behavior of cross-entropy loss as a bivariate function of encoder and decoder size, and show that it gives accurate predictions under a variety of scaling approaches and languages; we show that the total number of parameters alone is not sufficient for such purposes. (ii) We observe different power law exponents when scaling the decoder vs scaling the encoder, and provide recommendations for optimal allocation of encoder/decoder capacity based on this observation. (iii) We also report that the scaling behavior of the model is acutely influenced by composition bias of the train/test sets, which we define as any deviation from naturally generated text (either via machine generated or human translated text). We observe that natural text on the target side enjoys scaling, which manifests as successful reduction of the cross-entropy loss. (iv) Finally, we investigate the relationship between the cross-entropy loss and the quality of the generated translations. We find two different behaviors, depending on the nature …

Recent work has shown that models trained to the same objective, and which achieve similar measures of accuracy on consistent test data, may nonetheless behave very differently on individual predictions. This inconsistency is undesirable in high-stakes contexts, such as medical diagnosis and finance. We show that this duplicitous behavior extends beyond predictions to feature attributions, which may likewise have negative implications for the intelligibility of a model, and one's ability to find recourse for subjects. We then introduce selective ensembles to mitigate such inconsistencies by applying hypothesis testing to the predictions of a set of models trained using randomly-selected starting conditions; importantly, selective ensembles can abstain in cases where a consistent outcome cannot be achieved up to a specified confidence level. We prove that that prediction disagreement between selective ensembles is bounded, and empirically demonstrate that selective ensembles achieve consistent predictions and feature attributions while maintaining low abstention rates. On several benchmark datasets, selective ensembles reach zero inconsistently predicted points, with abstention rates as low as 1.5%.

In this paper, we analyze the number of neurons and training parameters that a neural network needs to approximate multivariate functions of bounded second mixed derivatives --- Korobov functions. We prove upper bounds on these quantities for shallow and deep neural networks, drastically lessening the curse of dimensionality. Our bounds hold for general activation functions, including ReLU. We further prove that these bounds nearly match the minimal number of parameters any continuous function approximator needs to approximate Korobov functions, showing that neural networks are near-optimal function approximators.

Reconstructing medical images from partial measurements is an important inverse problem in Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Existing solutions based on machine learning typically train a model to directly map measurements to medical images, leveraging a training dataset of paired images and measurements. These measurements are typically synthesized from images using a fixed physical model of the measurement process, which hinders the generalization capability of models to unknown measurement processes. To address this issue, we propose a fully unsupervised technique for inverse problem solving, leveraging the recently introduced score-based generative models. Specifically, we first train a score-based generative model on medical images to capture their prior distribution. Given measurements and a physical model of the measurement process at test time, we introduce a sampling method to reconstruct an image consistent with both the prior and the observed measurements. Our method does not assume a fixed measurement process during training, and can thus be flexibly adapted to different measurement processes at test time. Empirically, we observe comparable or better performance to supervised learning techniques in several medical imaging tasks in CT and MRI, while demonstrating significantly better generalization to unknown measurement processes.

We propose stiffness-aware neural network (SANN), a new method for learning Hamiltonian dynamical systems from data. SANN identifies and splits the training data into stiff and nonstiff portions based on a stiffness-aware index, a simple, yet effective metric we introduce to quantify the stiffness of the dynamical system. This classification along with a resampling technique allows us to apply different time integration strategies such as step size adaptation to better capture the dynamical characteristics of the Hamiltonian vector fields. We evaluate SANN on complex physical systems including a three-body problem and billiard model. We show that SANN is more stable and can better preserve energy when compared with the state-of-the-art methods, leading to significant improvement in accuracy.

Few-shot class incremental learning---the problem of updating a trained classifier to discriminate among an expanded set of classes with limited labeled data---is a key challenge for machine learning systems deployed in non-stationary environments. Existing approaches to the problem rely on complex model architectures and training procedures that are difficult to tune and re-use. In this paper, we present an extremely simple approach that enables the use of ordinary logistic regression classifiers for few-shot incremental learning. The key to this approach is a new family of \emph{subspace regularization} schemes that encourage weight vectors for new classes to lie close to the subspace spanned by the weights of existing classes. When combined with pretrained convolutional feature extractors, logistic regression models trained with subspace regularization outperform specialized, state-of-the-art approaches to few-shot incremental image classification by up to 22\% on the \textit{mini}ImageNet dataset. Because of its simplicity, subspace regularization can be straightforwardly extended to incorporate additional background information about the new classes (including class names and descriptions specified in natural language); these further improve accuracy by up to 2\%. Our results show that simple geometric regularization of class representations offer an effective tool for continual learning.

Learning fine-grained embeddings is essential for extending the generalizability of models pre-trained on "coarse" labels (e.g., animals). It is crucial to fields for which fine-grained labeling (e.g., breeds of animals) is expensive, but fine-grained prediction is desirable, such as medicine. The dilemma necessitates adaptation of a "coarsely" pre-trained model to new tasks with a few "finer-grained" training labels. However, coarsely supervised pre-training tends to suppress intra-class variation, which is vital for cross-granularity adaptation. In this paper, we develop a training framework underlain by a novel superclass-conditional Gaussian mixture model (SCGM). SCGM imitates the generative process of samples from hierarchies of classes through latent variable modeling of the fine-grained subclasses. The framework is agnostic to the encoders and only adds a few distribution related parameters, thus is efficient, and flexible to different domains. The model parameters are learned end-to-end by maximum-likelihood estimation via a principled Expectation-Maximization algorithm. Extensive experiments on benchmark datasets and a real-life medical dataset indicate the effectiveness of our method.


Large pre-trained language models have been used to generate code, providing a flexible interface for synthesizing programs from natural language specifications. However, they often violate syntactic and semantic rules of their output language, limiting their practical usability. In this paper, we propose Synchromesh: a framework for substantially improving the reliability of pre-trained models for code generation. Synchromesh comprises two components. First, it retrieves few-shot examples from a training bank using Target Similarity Tuning (TST), a novel method for semantic example selection. TST learns to recognize utterances that describe similar target programs despite of differences in surface natural language features. Then, Synchromesh feeds the examples to a pre-trained language model and samples programs using Constrained Semantic Decoding (CSD): a general framework for constraining the output to a set of valid programs in the target language. CSD leverages constraints on partial outputs to sample complete correct programs, and needs neither re-training nor fine-tuning of the language model. We evaluate our methods by synthesizing code from natural language descriptions using GPT-3 and Codex in three real-world languages: SQL queries, Vega-Lite visualizations and SMCalFlow programs. These domains showcase rich constraints that CSD is able to enforce, including syntax, scoping and typing rules. Across all …

Recently, brain-inspired spiking neuron networks (SNNs) have attracted widespread research interest because of their event-driven and energy-efficient characteristics. It is difficult to efficiently train deep SNNs due to the non-differentiability of its activation function, which disables the typically used gradient descent approaches for traditional artificial neural networks (ANNs). Although the adoption of surrogate gradient (SG) formally allows for the back-propagation of losses, the discrete spiking mechanism actually differentiates the loss landscape of SNNs from that of ANNs, failing the surrogate gradient methods to achieve comparable accuracy as for ANNs. In this paper, we first analyze why the current direct training approach with surrogate gradient results in SNNs with poor generalizability. Then we introduce the temporal efficient training (TET) approach to compensate for the loss of momentum in the gradient descent with SG so that the training process can converge into flatter minima with better generalizability. Meanwhile, we demonstrate that TET improves the temporal scalability of SNN and induces a temporal inheritable training for acceleration. Our method consistently outperforms the SOTA on all reported mainstream datasets, including CIFAR-10/100 and ImageNet. Remarkably on DVS-CIFAR10, we obtained 83% top-1 accuracy, over 10% improvement compared to existing state of the art.

Experiments with pre-trained models such as BERT are often based on a single checkpoint. While the conclusions drawn apply to the artifact tested in the experiment (i.e., the particular instance of the model), it is not always clear whether they hold for the more general procedure which includes the architecture, training data, initialization scheme, and loss function. Recent work has shown that repeating the pre-training process can lead to substantially different performance, suggesting that an alternative strategy is needed to make principled statements about procedures. To enable researchers to draw more robust conclusions, we introduce MultiBERTs, a set of 25 BERT-Base checkpoints, trained with similar hyper-parameters as the original BERT model but differing in random weight initialization and shuffling of training data. We also define the Multi-Bootstrap, a non-parametric bootstrap method for statistical inference designed for settings where there are multiple pre-trained models and limited test data. To illustrate our approach, we present a case study of gender bias in coreference resolution, in which the Multi-Bootstrap lets us measure effects that may not be detected with a single checkpoint. The models and statistical library are available online, along with an additional set of 140 intermediate checkpoints captured during pre-training to …

It is widely believed that deep neural networks contain layer specialization, wherein networks extract hierarchical features representing edges and patterns in shallow layers and complete objects in deeper layers. Unlike common feed-forward models that have distinct filters at each layer, recurrent networks reuse the same parameters at various depths. In this work, we observe that recurrent models exhibit the same hierarchical behaviors and the same performance benefits as depth despite reusing the same filters at every recurrence. By training models of various feed-forward and recurrent architectures on several datasets for image classification as well as maze solving, we show that recurrent networks have the ability to closely emulate the behavior of non-recurrent deep models, often doing so with far fewer parameters.


Is it possible to design an universal API for federated learning using which an ad-hoc group of data-holders (agents) collaborate with each other and perform federated learning? Such an API would necessarily need to be model-agnostic i.e. make no assumption about the model architecture being used by the agents, and also cannot rely on having representative public data at hand. Knowledge distillation (KD) is the obvious tool of choice to design such protocols. However, surprisingly, we show that most natural KD-based federated learning protocols have poor performance. To investigate this, we propose a new theoretical framework, Federated Kernel ridge regression, which can capture both model heterogeneity as well as data heterogeneity. Our analysis shows that the degradation is largely due to a fundamental limitation of knowledge distillation under data heterogeneity. We further validate our framework by analyzing and designing new protocols based on KD. Their performance on real world experiments using neural networks, though still unsatisfactory, closely matches our theoretical predictions.

Recent progress in Graph Neural Networks (GNNs) for modeling atomic simulations has the potential to revolutionize catalyst discovery, which is a key step in making progress towards the energy breakthroughs needed to combat climate change. However, the GNNs that have proven most effective for this task are memory intensive as they model higher-order interactions in the graphs such as those between triplets or quadruplets of atoms, making it challenging to scale these models. In this paper, we introduce Graph Parallelism, a method to distribute input graphs across multiple GPUs, enabling us to train very large GNNs with hundreds of millions or billions of parameters. We empirically evaluate our method by scaling up the recently proposed DimeNet++ and GemNet models by over an order of magnitude in the number of parameters. On the large-scale Open Catalyst 2020 (OC20) dataset, these graph-parallelized models lead to relative improvements of 1) 15% on the force MAE metric on the S2EF task and 2) 21% on the AFbT metric on the IS2RS task, establishing new state-of-the-art results.

Since the introduction of the transformer model by Vaswani et al. (2017), a fundamental question has yet to be answered: how does a model achieve extrapolation at inference time for sequences that are longer than it saw during training? We first show that extrapolation can be enabled by simply changing the position representation method, though we find that current methods do not allow for efficient extrapolation. We therefore introduce a simpler and more efficient position method, Attention with Linear Biases (ALiBi). ALiBi does not add positional embeddings to word embeddings; instead, it biases query-key attention scores with a penalty that is proportional to their distance. We show that this method trains a 1.3 billion parameter model on input sequences of length 1024 that extrapolates to input sequences of length 2048, achieving the same perplexity as a sinusoidal position embedding model trained on inputs of length 2048 but training 11% faster and using 11% less memory. ALiBi's inductive bias towards recency also leads it to outperform multiple strong position methods on the WikiText-103 benchmark.

In many reinforcement learning (RL) applications, the observation space is specified by human developers and restricted by physical realizations, and may thus be subject to dramatic changes over time (e.g. increased number of observable features). However, when the observation space changes, the previous policy will likely fail due to the mismatch of input features, and another policy must be trained from scratch, which is inefficient in terms of computation and sample complexity. Following theoretical insights, we propose a novel algorithm which extracts the latent-space dynamics in the source task, and transfers the dynamics model to the target task to use as a model-based regularizer. Our algorithm works for drastic changes of observation space (e.g. from vector-based observation to image-based observation), without any inter-task mapping or any prior knowledge of the target task. Empirical results show that our algorithm significantly improves the efficiency and stability of learning in the target task.

We propose data-driven one-pass streaming algorithms for estimating the number of triangles and four cycles, two fundamental problems in graph analytics that are widely studied in the graph data stream literature. Recently, Hsu et al. (2019) and Jiang et al. (2020) applied machine learning techniques in other data stream problems, using a trained oracle that can predict certain properties of the stream elements to improve on prior “classical” algorithms that did not use oracles. In this paper, we explore the power of a “heavy edge” oracle in multiple graph edge streaming models. In the adjacency list model, we present a one-pass triangle counting algorithm improving upon the previous space upper bounds without such an oracle. In the arbitrary order model, we present algorithms for both triangle and four cycle estimation with fewer passes and the same space complexity as in previous algorithms, and we show several of these bounds are optimal. We analyze our algorithms under several noise models, showing that the algorithms perform well even when the oracle errs. Our methodology expands upon prior work on “classical” streaming algorithms, as previous multi-pass and random order streaming algorithms can be seen as special cases of our algorithms, where the first …

"The power of a generalization system follows directly from its biases" (Mitchell 1980). Today, CNNs are incredibly powerful generalisation systems---but to what degree have we understood how their inductive bias influences model decisions? We here attempt to disentangle the various aspects that determine how a model decides. In particular, we ask: what makes one model decide differently from another? In a meticulously controlled setting, we find that (1.) irrespective of the network architecture or objective (e.g. self-supervised, semi-supervised, vision transformers, recurrent models) all models end up with a similar decision boundary. (2.) To understand these findings, we analysed model decisions on the ImageNet validation set from epoch to epoch and image by image. We find that the ImageNet validation set, among others, suffers from dichotomous data difficulty (DDD): For the range of investigated models and their accuracies, it is dominated by 46.0% "trivial" and 11.5% "impossible" images (beyond label errors). Only 42.5% of the images could possibly be responsible for the differences between two models' decision boundaries. (3.) Only removing the "impossible" and "trivial" images allows us to see pronounced differences between models. (4.) Humans are highly accurate at predicting which images are "trivial" and "impossible" for CNNs (81.4%). This …

Self-supervised visual representation learning aims to learn useful representations without relying on human annotations. Joint embedding approach bases on maximizing the agreement between embedding vectors from different views of the same image. Various methods have been proposed to solve the collapsing problem where all embedding vectors collapse to a trivial constant solution. Among these methods, contrastive learning prevents collapse via negative sample pairs. It has been shown that non-contrastive methods suffer from a lesser collapse problem of a different nature: dimensional collapse, whereby the embedding vectors end up spanning a lower-dimensional subspace instead of the entire available embedding space. Here, we show that dimensional collapse also happens in contrastive learning. In this paper, we shed light on the dynamics at play in contrastive learning that leads to dimensional collapse. Inspired by our theory, we propose a novel contrastive learning method, called DirectCLR, which directly optimizes the representation space without relying on a trainable projector. Experiments show that DirectCLR outperforms SimCLR with a trainable linear projector on ImageNet.

We present Sequential Neural Variational Inference (SNVI), an approach to perform Bayesian inference in models with intractable likelihoods. SNVI combines likelihood-estimation (or likelihood-ratio-estimation) with variational inference to achieve a scalable simulation-based inference approach. SNVI maintains the flexibility of likelihood(-ratio) estimation to allow arbitrary proposals for simulations, while simultaneously providing a functional estimate of the posterior distribution without requiring MCMC sampling. We present several variants of SNVI and demonstrate that they are substantially more computationally efficient than previous algorithms, without loss of accuracy on benchmark tasks. We apply SNVI to a neuroscience model of the pyloric network in the crab and demonstrate that it can infer the posterior distribution with one order of magnitude fewer simulations than previously reported. SNVI vastly reduces the computational cost of simulation-based inference while maintaining accuracy and flexibility, making it possible to tackle problems that were previously inaccessible.

Vapnik-Chervonenkis (VC) theory has so far been unable to explain the small generalization error of overparametrized neural networks. Indeed, existing applications of VC theory to large networks obtain upper bounds on VC dimension that are proportional to the number of weights, and for a large class of networks, these upper bound are known to be tight. In this work, we focus on a class of partially quantized networks that we refer to as hyperplane arrangement neural networks (HANNs). Using a sample compression analysis, we show that HANNs can have VC dimension significantly smaller than the number of weights, while being highly expressive. In particular, empirical risk minimization over HANNs in the overparametrized regime achieves the minimax rate for classification with Lipschitz posterior class probability. We further demonstrate the expressivity of HANNs empirically. On a panel of 121 UCI datasets, overparametrized HANNs are able to match the performance of state-of-the-art full-precision models.

Social: How to Negotiate Industry Offers in AI Tue 26 Apr 08:00 p.m.
We look forward to meeting you at the conference! One event we are hosting that could be particularly helpful for job seekers is a webinar on How to Negotiate Industry Offers in AI. This is a brand new webinar with updated content if you've previously attended some of our events.
Some of the topics we discuss are:
- How to choose the best job offer for career growth
- When should you walk away from a job offer
- When can an offer be rescinded from negotiating
Social: Lapsed Physicists Wine-and-Cheese Tue 26 Apr 10:00 p.m.
"Lapsed" (aka. Former) Physicists are plentiful in the machine learning community. Inspired by Wine and Cheese seminars at many institutions, this BYOWC (Bring Your Own Wine and Cheese) event is an informal opportunity to connect with members of the community.
Hear how others made the transition between fields. Discuss how your physics training prepared you to switch fields or what synergies between physics and machine learning excite you the most. Share your favorite physics jokes your computer science colleagues don't get, and just meet other cool people. Open to everyone, not only physicists; you'll just have to tolerate our humor. Wine and Cheese encouraged, but not required."